Générateurs de \mathfrak{S}_n

Mohamed NASSIRI

Références:

Cours de mathématiques, tome 1 : Algèbre, Jean-Marie Arnaudiès et Henri Fraysse - p.174 Mathématiques L3 : Algèbre, Aviva Szpirglas - p.266 Algèbre 3 Oraux x-ens Poche, Serge Francinou, Hervé Gianella et Serge Nicolas - p.67

Recasage:

- $\bullet \bullet \bullet \bullet \bullet$ 105 : Groupe des permutations d'un ensemble fini. Applications.
- • • 108 : Exemples de parties génératrices d'un groupe. Applications.

Résumé:

Ce développement se décompose en deux parties : on montre que les transpositions engendrent \mathfrak{S}_n et puis que n-1 est le nombre minimal de transposition engendrant \mathfrak{S}_n .

Prérequis:

Groupe symétrique

Théorème : Soit $n \geq 2$.

- (i) Les transpositions engendrent \mathfrak{S}_n .
- (ii) L'ensemble $\{(1 \ i), 1 \le i \le n\}$ engendre \mathfrak{S}_n .
- (iii) Le nombre minimal de transpositions engendrant \mathfrak{S}_n est n-1.

 $D\'{e}monstration.$

(i) Par récurrence sur n.

Pour n=2, c'est évident.

Supposons cela vrai au rang $n-1 \ge 2$, et montrons que cela est vrai au rang n.

- Si $\sigma(n)=n$, posons $s=\sigma_{|[\![1,n-1]\!]}$, d'où $s\in\mathfrak{S}_{n-1}$ et donc par hypothèse de récurrence, $s=t_1t_2...t_k$. Soit $\tau_i\in\mathfrak{S}_n$ tel que $\tau_i(n)=n$ et $\tau_{i|[\![1,n-1]\!]}=t_i$, alors $\tau_i\in\mathfrak{S}_n$ et on a bien $\sigma=\tau_1\tau_2...\tau_k$
- Si $\sigma(n) = \alpha < n$. Soit τ la transposition de \mathfrak{S}_n telle que $\tau(\alpha) = n$, $\tau(n) = \alpha$ et $\tau(j) = j$ pour $j \neq \{n, \alpha\}$. Alors $\tau\sigma(n) = n$. On se retrouve donc dans le cas précédent, et donc $\tau\sigma = \tau_1\tau_2...\tau_k$ et par suite $\sigma = \tau^{-1}\tau_1\tau_2...\tau_k = \tau\tau_1\tau_2...\tau_k$
- $(ii) \ \forall 1 \leq i, j \leq n$, on a $(i \ j) = (1 \ i)(1 \ j)(1 \ i)$, d'où le résultat.
- (iii) Ici la beauté de cette démonstration est qu'elle ne fait pas appel à l'algèbre mais à la théorie des

graphes (que l'on se rassure, il n'y a rien à savoir de plus que les quelques lignes ci-dessous).

Donnons nous $\tau_1, ..., \tau_k$ transpositions, avec $k \leq n-2$. On va représenter les entiers de 1 à n par des points non alignés dans le plan. Si la transposition $(a \ b)$ apparaît dans la liste $\tau_1, ..., \tau_k$, on joint par un segment les points a et b. On obtient ce que l'on appelle un graphe. On aura besoin du

Nécessairement, pour que $\tau_1, ..., \tau_k$ engendrent \mathfrak{S}_n , il faut que l'on puisse passer de n'importe quel sommet $i \in [\![1,n]\!]$ à n'importe quel sommet $j \in [\![1,n]\!]$. Un tel graphe est dit *connexe*.

Lemme : Si un graphe G sur un ensemble E de cardinal $n \ge 2$ est connexe, alors il a au moins n-1 arêtes.

Démonstration du lemme.

Par récurrence sur n.

Pour n=2, c'est évident.

Supposons cela vrai au rang n-1, et montrons que cela est vrai au rang n.

Soit un graphe G à n sommets.

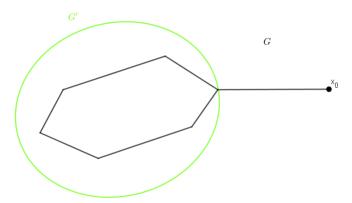
Si x est un sommet, on note $\delta(x)$ le nombre d'arêtes qui arrivent en x. On a donc :

$$\sum_{x \in E} \delta(x) = 2a(G) \tag{\bigstar}$$

où a(G) = nombre d'arêtes de G.

La connexité de G impose $\delta(x) \geq 1$. Deux cas se présentent donc à nous :

- $\delta(x) \geq 2$, on a donc directement avec (\bigstar) $a(G) \geq n$
- Il existe $x_0 \in E$ tel que $\delta(x_0) = 1$. En retirant x_0 et son arête, on obtient un nouveau graphe G' sur $E' = E \setminus \{x_0\}$



Par hypothèse de récurrence, on a $a(G') \ge |E'| - 1 = n - 2$ et donc $a(G) = a(G') + 1 \ge n - 2 + 1 = n - 1$. \square

Remarques:

- Revenons
- Mises en garde sur le développement : Attention à \dots