## NOMBRES ENTIERS ET DÉCIMAUX ET CALCUL

## I) Numération de position

Habituellement, on compte en base 10, c'est à dire que l'on fait des paquets de 10, puis des paquets de 10 paquets de 10... Les nombres s'écrivent avec les chiffres de 0 à 9. Dans notre écriture, c'est la position des chiffres qui indique leur valeur :3 dans les dizaines indique trente alors que 3 dans les milliers indique trois mille.

**Exemple :** 7 806 432 signifie 7 millions et 8 centaines de mille, 0 dizaine de mille, 6 unités de mille, 4 centaine, 3 dizaine et 2 unités.

C'est plus clair ainsi 7 806 432 =  $(7 \times 1000000) + (8 \times 100000) + (6 \times 1000) + (4 \times 100) + (3 \times 10) + 2$ 

7 806 432 se lit « sept millions huit cent six mille quatre cent trente-deux ».

On peut l'inscrire dans un tableau :

| (Unités de)<br>milliard | Centaines de millions | Dizaines de<br>millions | (Unités de)<br>millions | Centaines de<br>mille | Dizaines de<br>mille | (Unités de mille)<br>Milliers | Centaines | Dizaines | Unités |
|-------------------------|-----------------------|-------------------------|-------------------------|-----------------------|----------------------|-------------------------------|-----------|----------|--------|
|                         |                       |                         | 7                       | 8                     | 0                    | 6                             | 4         | 3        | 2      |

# II) Opération

**Additionner :** Dans une addition, on appelle les termes, les nombres qu'on additionne et la somme, le résultat de l'addition.

Exemple: A=789+12654 A est la somme de 789 et de 12 654

Pour le calcul de la somme de plusieurs nombres, l'ordre des termes n'a pas d'importance.

 $12 + 153 + 38 + 47 = 153 + 12 + 38 + 47 = 38 + 12 + 153 + 47 \dots$ 

**Soustraire :** Dans une soustraction, on appelle les termes, les nombres qu'on soustrait et la différence le résultat de la soustraction.

Exemple: B=141-59 B est la différence de 141 et de 59

Pour le calcul de la différence, l'ordre des termes est important : 141-59 est différent de 59-141!

**Multiplier :** Dans une multiplication, on appelle les facteurs, les nombres qu'on multiplie et le produit le résultat de la multiplication.

Exemple: C=141×59 C est le produit de 141 par 59. 141 et 59 sont des facteurs.

Pour le calcul du produit, l'ordre des facteur n'a pas d'importance : 141×59=59×141

### **III) Division Euclidienne**

Lorsque on a 39 bonbons et que l'on veut les partager entre 5 personnes, on peut en donner 7 à chacun, mais il reste 4 bonbons... C'est une division euclidienne.  $39 \div 5 = 7$  et reste 4, que l'on écrit plutôt  $5 \times 7 + 4 = 39$ 

**Définition :** Effectuer la division euclidienne de deux nombres entiers, c'est trouver deux nombres entiers, le quotient entier et le reste, qui vérifient l'égalité :

dividende = diviseur x quotient entier + reste

Le reste doit être inférieur au diviseur.

**Exemple**: Effectuer la division euclidienne de 517 par 12

### IV) Multiples et diviseurs

Lorsque on effectuer la division de 56 par 8, le reste est nul :  $56=8\times7+0$ . On dit parfois que "ça tombe juste", ce qui signifie que l'on peut partager équitablement et qu'il ne reste rien.

On écrit alors : 56=8x7.

On dit alors que : 56 est un multiple de 8.

56 est divisible par 8 (ou encore que 8 est un diviseur de 56).

**Remarque:** on peut remplacer « 8 » par « 7 » dans les deux phrases précédentes.

**Définition :** Lorsque le reste de la division euclidienne est nul, le quotient est un diviseur du dividende et le dividende est un multiple du quotient.

#### Critères de divisibilité :

Un nombre entier est

-divisible par 2 s'il se termine par 0, 2, 4, 6 ou 8 (nombre pair) ;

-divisible par 4 s'il est divisible par 2 deux fois consécutives ;

-divisible par 5 s'il se termine par 0 ou 5 ;

-divisible par 3 si la somme de ses chiffres est un multiple de 3 ;

-divisible par 9 si la somme de ses chiffres est un multiple de 9.

**Exemple:** 52968 est divisible par 2 (ou est un multiple de 2) car il se termine par 8.

52968 est divisible par 3 car 5+2+9+6+8=30 qui est bien un multiple de 3.

52968 n'est pas divisible par 9 car 5+2+9+6+8=30 qui n'est pas un multiple de 9.

52968 n'est pas divisible par 5 car il ne se termine ni par 0 ni par 5.

### VI) Opérations sur les décimaux

**Règle :** Lorsque on multiplie par 10, 100, 1000, le rang des chiffres qui compose le nombre est décalé de 1, 2 ou 3 places de manière à ce que le nombre soit plus grand (vers la gauche).

**Exemple:** 36,452×10=364,52 car les unités deviennent dizaines, les dixièmes deviennent unités...

875,21×1000=875210 car les unités deviennent unité de mille, les dixièmes deviennent centaines... Il y avait 0 millième, il y aura donc 0 unité.

Explication et méthode en vidéo : https://youtu.be/ZjzOYPCZmQE

**Règle :** Lorsque on divise par 10, 100, 1000, le rang des chiffres qui compose le nombre est décalé de 1, 2 ou 3 places de manière à ce que le nombre soit plus petit (vers la droite).

**Exemple:** 36,452÷10=3,6452 car les unités deviennent dixième, les dizaines deviennent unités...

875,21÷1000=0,87521 car les unités deviennent des millièmes, les dizaines deviennent des centièmes, les centaines deviennent des dixièmes et comme il n'y avait pas de milliers, il n'y a pas d'unité.

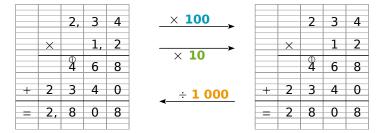
En vidéo: <a href="https://youtu.be/v-nXywWNSnk">https://youtu.be/v-nXywWNSnk</a>

**Remarque :** Lorsque on multiplie par 0,1 ou 0,01 ou 0,001, c'est comme quand on divise par 10, 100, 1000... le rang des chiffres qui compose le nombre est décalé de 1, 2 ou 3 places de manière à ce que le nombre soit plus petit (vers la droite).

**Exemple:** 36,452×0,1=3,6452 car les unités deviennent dixièmes, les dixièmes deviennent centièmes...

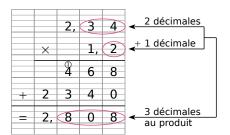
5,32×0,001=0,0532 car les unités deviennent des centièmes. Il n'y avait pas de dizaines ni de centaines, il n'y a donc pas de dixième ni d'unité.

Rappel de la méthode de la multiplication posée des décimaux : On va multiplier par 10, 100, 1000... jusqu'à obtenir des entiers. On va pouvoir faire la multiplication et ensuite, on va faire l'inverse, c'est à dire diviser par 10, 100, 1000 de manière équivalente. C'est ce qu'on voit dans la méthode ci-dessous.



On effectue la multiplication de 234 par 12. 234 est 100 fois plus grand que 2,34 et 12 est 10 fois plus grand que 1,2. Le produit 2,34  $\times$  1,2 est donc 1 000 fois plus petit que 2 808.

Finalement  $2,34 \times 1,2 = 2,808$ .



Le facteur 2,34 a deux chiffres après la virgule. Le facteur 1,2 a un chiffre après la virgule.

On doit donc placer la virgule dans le produit de telle sorte qu'il y ait 2 + 1 = 3 chiffres après la virgule.

### VII) Division décimale

Revoir la technique de la division en vidéo, et surtout comprendre pourquoi on fait ainsi : <a href="https://youtu.be/JL0FonvVB\_c">https://youtu.be/JL0FonvVB\_c</a>

#### Cas n°1: la division se termine

 $38.7 \div 6 = 6.45$ 

L'écriture décimale 6,45 est la valeur exacte du quotient.

On peut donc écrire :  $\frac{38,7}{6} = 6,45$ .



#### Cas n°2: la division ne se termine pas

38,7 ÷ 11 (la division ne se termine pas)

Les écritures décimales 3,5 ou 3,51 ou 3,518 ne sont que des valeurs approchées du quotient.

On peut par exemple écrire :  $\frac{38,7}{11} \approx 3,518$ 

**Remarque :** Quelles valeurs approchées donner lorsque la division ne se termine pas ? On peut encadrer un nombre de plusieurs façons, et ainsi déterminer des valeurs approchées de ce nombre.

L'arrondi d'un nombre est la valeur approchée « la plus proche » du nombre.

#### Exemple:

| 43,72198    | Valeur<br>approchée par<br>défaut | Valeur<br>approchée par<br>excès | Arrondi |
|-------------|-----------------------------------|----------------------------------|---------|
| à l'unité   | 43                                | 44                               | 44      |
| au dixième  | 43,7                              | 43,8                             | 43,7    |
| au centième | 43,72                             | 43,73                            | 43,72   |



**Remarque :** Pour diviser deux nombres décimaux, on peut les multiplier par 10, 100, 1000... pour que le diviseur soit entier, et ensuite, on remultipliera le résultat.

**Exemple:** pour faire 12,6÷3,6, on peut faire 12,6÷36 et on multipliera ensuite par 10