Puissance de 10 et écriture scientifique

Rappel: Pour tout nombre entier n > 0: $10^n = \underbrace{10 \times 10 \times ... \times 10}_{n \text{ factours}} = \underbrace{10 ...0}_{n \text{ perces}}$

$$10^{-n} = \underbrace{\frac{1}{10} \times \frac{1}{10} \times ... \times \frac{1}{10}}_{n \text{ facteurs}} = \underbrace{0,0...0}_{n \text{ zéros}} 1$$

Par exemple : $10^5 = 100000$ et $10^{-4} = 0,0001$

Règle de calcul avec les puissances : Pour tous les nombres entiers relatifs m et p :

Produits de puissances de 10 : $10^4 \times 10^5 = 10^{4+5} = 10^9$ ou encore $10^5 \times 10^{-7} = 10^{-2}$ c'est à dire $10^m \times 10^n = 10^{m+n}$

Quotients de puissances : $\frac{10^4}{10^6} = 10^4 \div 10^6 = 10^{4-6} = 10^{-2}$ ou encore $\frac{10^4}{10^{-2}} = 10^{4-(-2)} = 10^6$ c'est à dire

 $\frac{10^{m}}{10^{n}} = 10^{m-n}$

Puissances de puissances de 10 $(10^5)^3 = 10^{5^3} = 10^{5 \times 3} = 10^{15}$ et $(10^{-4})^3 = 10^{-4^3} = 10^{-12}$ c'est à dire $(10^m)^p = 10^{mp}$

Remarque : Ces règles de calculs sont vraies avec d'autres puissances que des puissances de 10.

Définition : Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-à-dire sous la forme $a \times 10^n$, où a est un nombre décimal ayant un seul chiffre non nul avant la virgule et où n est un nombre entier relatif.

L'écriture scientifique est utile pour les très grands nombres (la masse d'une planète) et les très petits nombres (la taille du noyau d'un atome)

Exemple: L'écriture scientifique de 685702,25 est 6,8570225×10⁵ (On a décalé de 5)

L'écriture scientifique de 0,058 est 5,8×10⁻² (On a décalé de 2)

Pour déterminer la puissance, il faut compter de combien on a décalé les chiffres qui composent le nombre.