Amphi 6 : Diagonalisation des matrices symétriques réelles et classification des matrices orthogonales Fondements Mathématiques 3

Ann Lemahieu

October 14, 2019

Matrices symétriques

Définition

Une matrice $A \in \mathcal{M}_n(K)$ est dite symétrique si ${}^tA = A$.

Définition

Un endomorphisme f de E est symétrique (autoadjoint) si la matrice de f dans une base orthonormée de E est symétrique.

Matrices symétriques

Proposition

- Soit f un endomorphisme de E. Alors f est symétrique (autoadjoint) ssi $\forall x, y \in E : \langle f(x), y \rangle = \langle x, f(y) \rangle$.
- ② Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors A est une matrice symétrique ssi $\forall X, Y \in \mathcal{M}_{n,1}(\mathbb{R}): \langle AX, Y \rangle = \langle X, AY \rangle.$

But

Diagonalisation des endomorphismes symétriques

Soit $f \in \mathcal{L}(E)$ un endomorphisme symétrique. Alors :

- lacktriangledown f est diagonalisable sur $\mathbb R$
- Les espaces propres sont deux à deux orthogonaux

Diagonalisation des matrices symétriques réelles

Soit A une matrice symétrique réelle de $\mathcal{M}_n(\mathbb{R})$. Alors :

- lacktriangle A est diagonalisable sur $\mathbb R$
- 2 Les espaces propres sont deux à deux orthogonaux

Amphi 6 : Diagonalisation des matrices symétriques réelles et classification des matrices orthogonales Fondements Mathématiques 3
Rappels et suite : Diagonalisation des matrices symétriques réelles

Résumé : Diagonalisation des endomorphismes symétriques/matrices symétriques réelles

Théorème

Tout endomorphisme symétrique $f \in \mathcal{L}(E)$ est diagonalisable dans une base orthonormée.

Théorème

Soit A une matrice symétrique réelle de $\mathcal{M}_n(\mathbb{R})$.

Alors il existe une matrice orthogonale P telle que $P^{-1}AP$ soit diagonale.

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

Rappels et suite : Diagonalisation des matrices symétriques réelles

• A est symétrique réelle donc toutes les valeurs propres sont réelles.

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

4 est symétrique réelle donc toutes les valeurs propres sont réelles. En effet :

$$P_A(x) = -(x-1)(x+2)^2$$

et donc les valeurs propres sont 1 et -2.

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

• A est symétrique réelle donc toutes les valeurs propres sont réelles. En effet :

$$P_A(x) = -(x-1)(x+2)^2$$

et donc les valeurs propres sont 1 et -2.

A est symétrique réelle donc A est diagonalisable et il existe donc une base de vecteurs propres.

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

• A est symétrique réelle donc toutes les valeurs propres sont réelles. En effet :

$$P_A(x) = -(x-1)(x+2)^2$$

et donc les valeurs propres sont 1 et -2.

② A est symétrique réelle donc A est diagonalisable et il existe donc une base de vecteurs propres. En effet :

$$mult_{alg}(-2) = dim(E_{-2}) = dim(Vect((-1, 1, 0), (-1, 0, 1)))$$

et

$$mult_{al\sigma}(1) = dim(E_1) = dim(Vect(1, 1, 1)),$$

et ((-1,1,0),(-1,0,1),(1,1,1)) est une base de vecteurs propres.

On applique l'algorithme de Gram-Schmidt sur chaque espace propre :

$$((\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}))$$
 est une b.o.n. de E_{-2} $((\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}))$ est une b.o.n. de E_{1}

4 est symétrique réelle donc les espaces propres sont 2 à 2 orthogonaux.

On applique l'algorithme de Gram-Schmidt sur chaque espace propre :

$$((\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}))$$
 est une b.o.n. de E_{-2} $((\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}))$ est une b.o.n. de E_{1}

4 est symétrique réelle donc les espaces propres sont 2 à 2 orthogonaux. En effet :

$$E_{-2} \perp E_1$$
.

Ainsi l'union des b.o.n. des espaces propres est une b.o.n. de vecteurs propres de \mathbb{R}^n !

■ La matrice de passage P de la base canonique vers la nouvelle b.o.n. de vecteurs propres est orthogonale :

$$P = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 0 & \sqrt{2}/\sqrt{3} & \sqrt{3}/3 \end{pmatrix}.$$

• La matrice de passage P de la base canonique vers la nouvelle b.o.n. de vecteurs propres est orthogonale :

$$P = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 0 & \sqrt{2}/\sqrt{3} & \sqrt{3}/3 \end{pmatrix}.$$

$$\left(\begin{array}{ccc} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Amphi 6 : Diagonalisation des matrices symétriques réelles et classification des matrices orthogonales Fondements Mathématiques 3

Rappels et suite : Diagonalisation des matrices symétriques réelles

Question

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle qu'il existe une matrice orthogonale $P \in GL_n(\mathbb{R})$ telle que tPAP soit diagonale.

Qu'est-ce que cela implique sur *A* ?

Résumé

Théorème

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Il existe une matrice orthogonale $P \in GL_n(\mathbb{R})$ telle que tPAP soit diagonale si et seulement si A est symétrique.

Transformation orthogonale

Lemme

Soit f un endomorphisme d'un espace Euclidien E. Si la matrice de f est orthogonale dans une base orthonormée de E, alors la matrice de f est orthogonale dans toute base orthonormée de E.

Transformation orthogonale

Lemme

Soit f un endomorphisme d'un espace Euclidien E. Si la matrice de f est orthogonale dans une base orthonormée de E, alors la matrice de f est orthogonale dans toute base orthonormée de E.

Définition

Un endomorphisme f de E est dit orthogonal si la matrice de f dans une base orthonormée de E est orthogonale.

Endomorphismes/transformations orthogonales

Proposition

Soit f un endomorphisme de E. Sont équivalents :

- f est orthogonal
- ② $\forall x, y \in E : \langle f(x), f(y) \rangle = \langle x, y \rangle$

Transformations orthogonales directes/indirectes

Proposition

Soit f un endomorphisme orthogonale de E. Alors $det(f) = \pm 1$.

Définition

Les transformations/matrices orthogonales de déterminant 1 sont dites directes ;

les transformations/matrices orthogonales de déterminant -1 sont dites indirectes.

Les transformations orthogonales sont également appelées isométries vectorielles.

Groupe orthogonal

Rappels

Soit $O(n,\mathbb{R}):=\{P\in\mathcal{M}_n(\mathbb{R})\mid^t PP=I_n\}$. Alors

- ullet si $P,Q\in O(n,\mathbb{R})$, alors $PQ\in O(n,\mathbb{R})$;
- \bullet si $P \in O(n, \mathbb{R})$, alors $P^{-1} \in O(n, \mathbb{R})$.

En particulier, $O(n,\mathbb{R})$ est un groupe, dit groupe orthogonal.

Notation

On note

$$SO(n,\mathbb{R}) := \{P \in O(n,\mathbb{R}) \mid det(P) = 1\}$$

pour l'ensemble des matrices orthogonales directes.

Amphi 6 : Diagonalisation des matrices symétriques réelles et classification des matrices orthogonales Fondements Mathématiques 3 Interorétation géométrique de matrices orthogonales

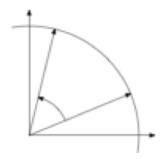
Exemples / contre-exemples en \mathbb{R}^2

Théorème

Si $A \in SO(2,\mathbb{R})$, alors il existe un angle θ tel que

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

A représente la rotation d'angle θ de centre 0.

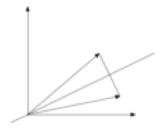


Théorème

Si $A \in O(2,\mathbb{R}) \setminus SO(2,\mathbb{R})$, alors il existe un angle θ tel que

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}.$$

A représente la symétrie orthogonale d'angle $\theta/2$ par rapport à la droite.



Corollaire

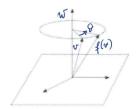
Soit $A \in O(2, \mathbb{R})$.

Si det(A) = 1, alors A représente une rotation.

Si det(A) = -1, alors A représente une symétrie orthogonale par rapport à une droite.

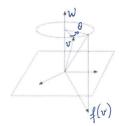
Théorème

Si $A \in SO(3,\mathbb{R})$, alors A représente une rotation autour d'une droite.



Théorème

Si $A \in O(3,\mathbb{R}) \setminus SO(3,\mathbb{R})$, alors A représente une rotation autour d'une droite D, suivie d'une symétrie orthogonale par rapport au plan D^{\perp} .



Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Pour la matrice orthogonale

$$P = \left(\begin{array}{ccc} -1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 0 & \sqrt{2}/\sqrt{3} & \sqrt{3}/3 \end{array} \right),$$

on a que $P^{-1}AP$ est diagonale. Comme det(P)=1, le passage de la base canonique à la base

$$\left((\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}), (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})\right)$$

est une

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Pour la matrice orthogonale

$$P = \left(\begin{array}{ccc} -1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 1/\sqrt{2} & -1/\sqrt{6} & \sqrt{3}/3 \\ 0 & \sqrt{2}/\sqrt{3} & \sqrt{3}/3 \end{array} \right),$$

on a que $P^{-1}AP$ est diagonale. Comme det(P)=1, le passage de la base canonique à la base

$$\left((\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}), (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})\right)$$

est une rotation.

Amphi 6 : Diagonalisation des matrices symétriques réelles et classification des matrices orthogonales Fondements Mathématiques 3 Interprétation géométrique de matrices orthogonales

Test

Vrai ou faux ?

Une translation est une isométrie vectorielle.

Test

Vrai ou faux?

- Une translation est une isométrie vectorielle.
- ② Soient $f: E \longrightarrow$ une application linéaire telle que la matrice de f dans la base $\mathcal{B} := ((1,0,0),(0,2,0),(0,0,1))$ est une matrice orthogonale. Alors f est une transformation orthogonale.

Test

Vrai ou faux?

- 1 Une translation est une isométrie vectorielle.
- ② Soient $f: E \longrightarrow$ une application linéaire telle que la matrice de f dans la base $\mathcal{B} := ((1,0,0),(0,2,0),(0,0,1))$ est une matrice orthogonale. Alors f est une transformation orthogonale.
- Soit A une matrice symétrique. Alors les valeurs propres de A sont toutes réelles.

Test

Vrai ou faux?

- 1 Une translation est une isométrie vectorielle.
- ② Soient $f: E \longrightarrow$ une application linéaire telle que la matrice de f dans la base $\mathcal{B} := ((1,0,0),(0,2,0),(0,0,1))$ est une matrice orthogonale. Alors f est une transformation orthogonale.
- Soit A une matrice symétrique. Alors les valeurs propres de A sont toutes réelles.
- **4** Soit A une matrice réelle. Alors A est n'est pas toujours diagonalisable sur \mathbb{R} mais l'est toujours sur \mathbb{C} .