
A VMX INTALLATION

GUIDE

http://www.junosandme.net

By David Roy

A VMX installation Guide www.junosandme.net – David Roy

2

Installing VMX for lab simulation

Let’s start the first VMX installation by the simplest use case. VMware ESXi offers a graphical interface

through the vSphere Client to create and manage your Virtual Machine and your virtual bridges. This is the

simplest way to quickly create several VMX routers for lab testing purposes. The aim is to deploy this

topology based on two VMX routers on our ESXi server:

Figure . VMX topology on ESXi

Server and host OS requirements

There are only few hardware and software requirements for low-bandwidth application which are:

 Processor has to support VT-X. All recent x86 (Intel or AMD) processors support today standard

Virtualization Technique).

 Make sure your server has enough memory and cpu capacities to install at least one VMX instance. For

that refer to the table X-X.

 The VMware ESXi version must be at least 5.5.0u2

ESXi installation

The installation of the VMware ESXi is out of the scope of this book. Just simply create a bootable USB

key based on the ISO image of the ESXi. Then, follow the step by step installation procedure. No specific

option is required to run VMX on ESXi.

Organize your “work folder” on ESXi

With the vSphere client you have access to your ESXi. You can organize your datastore as followed (this is

just a recommendation):

1. Access to the datastore: from the summary tab right click on the datastore and select Browse Datastore:

A VMX installation Guide www.junosandme.net – David Roy

3

Figure . Access to the ESXi datastore

2. Then create one folder per VMX router – here we have created vmx1 and vmx2 folders. The others

folder referring to vmx1 and vmx2 will create automatically during the VM deployment.

Figure . How to organize your work folder

You can also create a Resource Pool without any restriction in order to merge all your Virtual Machines

into a single container. For that, right click at the root level of the server and select New Resource Pool.

A VMX installation Guide www.junosandme.net – David Roy

4

Figure . Create a new resource pool

On the next window, just fill a name – here vRouter:

A VMX installation Guide www.junosandme.net – David Roy

5

Figure . Adding a resource pool for your virtual lab

Preparing the virtual bridges

As shown on the Figure , there are several virtual bridges needed in our topology:

 br-ext: to interconnect out-of-band management interfaces of the VCP and VFP of both VMX and the

physical port vmnic1 of the server.

 br-int-vmx1: to connect the VCP and VFP virtual machines of vmx1

 br-int-vmx2: to connect the VCP and VFP virtual machines of vmx2

 br-vmx1-vmx2: to connect the interface ge-0/0/1 of the two VMX routers.

 vmx1-ge-0/0/0: to connect the interface ge-0/0/0 of the vmx1 to the physical interface vmnic2

 vmx2-ge-0/0/0: to connect the interface ge-0/0/0 of the vmx2 to the physical interface vmnic3

We highly recommend to create all the required virtual bridges before starting the installation of the VMX

instances. To create the br-ext virtual bridge just follows these steps:

A VMX installation Guide www.junosandme.net – David Roy

6

1. Click on the “Configuration” tab, then select “Networking” and “Add Networking”:

Figure . Create a virtual bridge with vSphere Client

2. Choose the Connection Types as Virtual Machine

Figure . Select the connection type

3. Create a vSphere standard switch with vmnic1 selected:

Figure . Add a physical NIC to the bridge

4. Add a name to your virtual bridge: br-ext and then finish.

A VMX installation Guide www.junosandme.net – David Roy

7

Figure . Add a name for your bridge

5. Then scroll down to find the br-ext bridge and click to Properties.

Figure . Modify the properties of an existing bridge

6. Select vSwitch and then click Edit on bottom.

A VMX installation Guide www.junosandme.net – David Roy

8

Figure . Select and edit properties of a vSwitch

7. Configure the MTU to 9000 in the General Tab and Promiscuous Mode to Accept on Security Tab

A VMX installation Guide www.junosandme.net – David Roy

9

Figure . Change MTU and Security options of an existing bridge

You have just to repeat these steps to create the other virtual bridges. Just notice, at the step 3, depending

on the virtual bridge you might have to attach a vmnic (vmnic2 or 3 for vmx1-ge-0/0/0 and vmx2-ge-0/0/0)

or unselect all vmnic when the virtual bridge attaches only purely virtual interface (this is the case for br-

int-vmx1, br-int-vmx2 and br-vmx1-vmx2). Don’t forget to modify the MTU and Promiscuous Mode for

each virtual bridge. Finally you should have the following bridges created:

A VMX installation Guide www.junosandme.net – David Roy

10

Figure . General view of all vSwitch

Installing VCP VM

First of all, retrieve the VMX package for ESXi on the Juniper website. For us it is installation package is

vmx-esxi-15.1F4.15. Decompress the package on your computer and upload the four files of the vmx-

15.1F4-3-ESXi\vmdk into the vmx1 folder of the datastore:

A VMX installation Guide www.junosandme.net – David Roy

11

Figure . Upload the VMX files in the datastore

Follow this step by step procedure to create the VCP virtual machine.

1. Click on Create a new Virtual Machine

2. Select “Custom”

3. Choose a name for your Virtual Machine: here vmx1-vcp

Figure . Create the VCP VM

4. Select the target Resource Pool: here vRouter

A VMX installation Guide www.junosandme.net – David Roy

12

* Figure . Assign the VM to a resource pool

5. Change nothing regarding the Storage information, just click next

6. Select at least a version 8 for the virtual Machine

7. Choose the type of Guest OS as Other 64bits

Figure . Select the Guess OS type

8. Assign 1 socket and 1 vCPU to the VCP

A VMX installation Guide www.junosandme.net – David Roy

13

Figure . Assign vCPU to VCP VM

9. Assign 2GB of memory:

Figure . Assign memory to VCP VM

10. For interface, select 2 virtual interfaces – the first one will be attached to the fxp0 of the VCP and the

second one to the em1 interface. Therefore, connect the first virtual interface to the bridge br-ext and

the second interface to the bridge br-int-vmx1. For both interface choose the E1000 type:

A VMX installation Guide www.junosandme.net – David Roy

14

Figure . Create virtual interfaces of VCP

11. Let the LSI Logic Parallel selected as SCSI controller

12. Regarding the Hard Disk choose Use Existing virtual Disk:

Figure . Configure the master virtual disk of VCP

13. Then choose the following disk into the vmx1 folder: jinstall64-vmx-15.1F4.15-domestic.vmdk

A VMX installation Guide www.junosandme.net – David Roy

15

Figure . Select image from datastore

14. On the Advance Option tab click “Edit Before” at the bottom of the screen then click Continue

Figure . Advance editing of the VCP VM

15. Add a second Hard Disk, choose one more time Use Existing virtual Disk and select the file

vmxhdd.vmdk into the vmx1 folder of the datastore:

A VMX installation Guide www.junosandme.net – David Roy

16

Figure . Add a second hard disk to VCP

16. Repeat the step one more time: Add a third Hard Disk, choose once again Use Existing virtual Disk

and select the file metadata_usb.vmdk into the vmx1 folder of the datastore

17. Then finish the installation of the virtual machine

Installing VFP VM

Follow this step by step procedure to create the VFP virtual machine.

1. Click on Create a new Virtual Machine

2. Select “Custom”

3. Choose a name for your Virtual Machine: here vmx1-vfp

A VMX installation Guide www.junosandme.net – David Roy

17

Figure . Create the VFP VM

4. Select the target Resource Pool: here vRouter

5. Change nothing regarding the Storage information, just click next

6. Select at least a version 8 for the virtual Machine

7. Choose the type of Guest OS as Other 64bits

8. Assign 1 socket and 3 vCPU to the VFP

Figure . Assign vCPU to VFP VM

9. Assign 8GB of memory:

A VMX installation Guide www.junosandme.net – David Roy

18

Figure . Assign memory to VFP VM

10. For the network connections option select four virtual interfaces – the first one will be attached to the

eth0 of the VFP and the second one to the eth1 interface. The next interfaces will be the data plane

interfaces. Therefore, connect the first virtual interface to the bridge br-ext and the second interface to

the bridge br-int-vmx1. For both interfaces choose the E1000 adapter. For the third interface, attach it

to the bridge vmx1-ge-0/0/0 with a VMXNET3 adapter (this adapter is actually a paravirtualized

device and will be attached to the ge-0/0/0 interface of vmx1). Finally add a fourth interface attached

to the bridge br-vmx-vmx2 with a E1000 adpater: it will be attached to ge-0/0/1 interface of vmx1.

Figure . Configure virtual interfaces of VFP VM

11. Let the LSI Logic Parallel selected as SCSI controller

12. Regarding the Hard Disk select Use Existing virtual Disk.

13. Then choose the following disk into the vmx1 folder: vFPC-20151203.vmdk

A VMX installation Guide www.junosandme.net – David Roy

19

Figure . Add a virtual disk to VFP VM

14. Then finish the installation of the virtual machine

Console port of the VMX router

The two virtual machines VCP and VFP part of the vmx1router are now installed. Before starting the

virtual machines you could add a serial port to your virtual machine as followed:

1. Right click on the VCP virtual machine and choose Edit Settings

Figure . Edit VCP VM properties

2. Click to the Add button, select Serial Port then press Next and choose Connect via Network

A VMX installation Guide www.junosandme.net – David Roy

20

3. Configure the serial access as followed. Hereafter the console port uses the TCP Port 10000. To

connect to the console port of the VCP VM of vmx1 you have just to telnet the management IP address

of your server on port 10000.

Figure . Add a virtual network serial port

4. You should add a Firewall rules to allow telnet access. Just move to the Configuration tab then on

Security Profile option click to Properties

Figure . Access to the security properties of the ESXi

5. Finally enable the option: VM Serial port connected over network

Figure . Allow network serial console port traffic

Initial configuration of VMX

Now let’s power on the two virtual machines (VCP and VFP) of vmx1:

A VMX installation Guide www.junosandme.net – David Roy

21

Figure . Power on VCP and VFP VMs

After few minutes you should have access to the console port of the VCP. The default user is root with no

password. Then enter in cli mode like that:

Amnesiac (ttyd0)

login: root

--- JUNOS 15.1F4.15 built 2015-12-23 20:22:39 UTC

root@% cli

root>

You should first see that one FPC is detected:

root> show chassis fpc

 Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)

Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap Buffer

 0 Online Absent 0 0 0 0 0 0 0 0

root> show chassis hardware

Hardware inventory:

Item Version Part number Serial number Description

Chassis VMX755c VMX

Midplane

Routing Engine 0 RE-VMX

CB 0 VMX SCB

CB 1 VMX SCB

FPC 0 Virtual FPC

 CPU Rev. 1.0 RIOT 123XYZ987

After adding the license you should do now some initial configurations. As seen below, we configure the

FPC in slot 0 with one PIC made of 8 ports. As of Junos 15.1 only FPC 0 and PIC 0 have a meaning. The

number of ports currently supported is 1 up to 23. Even if we only need two ports we allocate 8 GE ports

for illustration purposes. The second command is actually a pure cosmetic knob. It allows you to choose the

prefix of the VFP’s interfaces. You have three choices: ge, xe or et. We select ge as our physical port is

a 1GE interface: but just for fun we could use et and it will work also. We finally add some configuration

lines: the hostname, the root password (mandatory), a new user “lab” and we configure the out-of-band

management interface fxp0 (attached to the br-ext bridge):

[edit]

root# set chassis fpc 0 pic 0 number-of-ports 8

root# set chassis fpc 0 pic 0 interface-type ?

Possible completions:

 et Prefix interfaces as et

 ge Prefix interfaces as ge

 xe Prefix interfaces as xe

[edit]

root# set chassis fpc 0 pic 0 interface-type ge

[edit]

root# set system host-name vmx1

root# set system root-authentication plain-text-password

New password:

Retype new password:

A VMX installation Guide www.junosandme.net – David Roy

22

root# set system login user lab authentication plain-text-password

New password:

Retype new password:

[edit]

root# set system login user lab class super-user

[edit]

root# set interfaces fxp0 unit 0 family inet address 192.168.1.2/24

Once the following configuration committed you can check interfaces status:

root@vmx1> show interfaces terse | match ge-

ge-0/0/0 up up

ge-0/0/1 up up

ge-0/0/2 up down

ge-0/0/3 up down

ge-0/0/4 up down

ge-0/0/5 up down

ge-0/0/6 up down

ge-0/0/7 up down

As observed, only two interfaces are UP as we installed a VMX with only two data plane interfaces: the

first one ge-0/0/0 is connected to vmnic2 through the virtual bridge vmx1-ge-0/0/0 and the second one is

ge-0/0/1, a pure virtual interface connected to the virtual switch br-vmx1-vmx2. The initial configuration is

finished.

Finalize your lab topology

To finalize our topology we need to create another VMX: vmx2. Just repeat all the above steps to create the

VCP and VFP VMs of vmx2. We only summarize below the steps that you should take care:

 Copy the four files of the VMX package installation into a new folder of the datastore: vmx2. You

could upload the files one more time or just copy/paste existing files of the vmx1 folder to vmx2

folder.

 For VCP make sure you configure the two virtual interfaces like that. Remember that the first interface

is always the management interface and the second one the internal interface uses for VCP and VFP

communication:

Figure . Virtual interfaces of VCP of the second VMX router

 For VFP make sure you configure four virtual interfaces as followed. The first two interfaces are used

respectively for management and internal traffic. The next interfaces are data plane interfaces attached

to ge-0/0/x interfaces of the VMX:

A VMX installation Guide www.junosandme.net – David Roy

23

Figure . Virtual interfaces of VFP of the second VMX router

 Add a serial port to the VCP VM of vmx2 and finally carry out the initial configuration of the vmx2.

Installing VMX for low-bandwidth applications

The previous installation part covered a very simple way to deploy a VMX router using the GUI of the

vSphere Client. It shown with VMware you can install and interconnect very quickly several VMX for lab

simulation.

During the next part we will focus on the installation of VMX for low-bandwidth applications. Even if we

can use ESXi with Paravirtualization interfaces (commonly name vmxnet3 on VMware) to achieve that, we

decided to switch to a new hypervisor, Linux/KVM.

The aim is to deploy on a single server the following topology depicted by the Figure :

A VMX installation Guide www.junosandme.net – David Roy

24

Figure . Two VMX configured on KVM

As seen, each VMX router has got two interfaces. One connected to a 1GE physical port of the server,

respectively em2 for vmx1 and em3 for VMX2. The second interfaces of both VMX are internally crossed

connected together through a virtual bridge. IP addressing of VFP interfaces and for management interface

(fxp0) of both VMX are also described on the figure above.

Server and host OS pre-requires

There are only few hardware and software requirements for low-bandwidth applications which are:

 Processor has to support VT-X. All recent x86 (Intel or AMD) processors support today standard

Virtualization Technique). This following command provides you the information if VT-X is

supported on your CPU:

jnpr@kvm:~$ lscpu | grep Virtualization

Virtualization: VT-x

 Make sure your server has enough memory and cpu capacities to install at least one VMX instance. For

that refer to the table X-X.

 The virtio interface support is required for better network I/O performances.

Host OS and KVM installation

As of Junos 15.1F4 the supported host Operating System for VMX over Linux/KVM is Ubuntu 14.04 LTS.

You can download online the ISO file of the Ubuntu 14.04 LTS on many repositories. Make sure you

choose the “Server” distribution. Then simply build a bootable USB key based on this ISO and start the

installation of Ubuntu on your server. This chapter does not cover the full Ubuntu installation. Nevertheless

at the installation’s step “Software Selection” make sure you select the “Virtual Machine Host” package.

This one includes KVM/QEMU software. Hereafter, we select also OpenSSH server to access our server

through a secure connection.

[*] OpenSSH server

[] DNS server

A VMX installation Guide www.junosandme.net – David Roy

25

[] LAMP server

[] Mail server

[] PostgreSQL database

[] Print server

[] Samba file server

[] Tomcat Java server

[*] Virtual Machine host

[*] Manual package selection

Once your server is installed, just check you have the recommended Ubuntu version:

jnpr@kvm:~$ lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 14.04.4 LTS

Release: 14.04

Codename: trusty

And also check the version of KVM which should be at least 2.0.0:

jnpr@kvm:~$ kvm --version

QEMU emulator version 2.0.0 (Debian 2.0.0+dfsg-2ubuntu1.22), Copyright (c) 2003-2008 Fabrice

Bellard

The server uses in this lab hosts four 1GE interfaces configured as followed. The em1 is the management

interface used to reach the server itself and also the management interface of both VMX routers. Remember

em1 port will attached to a virtual bridge that will also connect the fxp0 interfaces of VCP instances.

jnpr@kvm:~$ more /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto em1

iface em1 inet static

 address 192.168.1.254

 netmask 255.255.255.0

 network 193.168.1.0

 broadcast 193.168.1.255

 gateway 193.168.1.253

 dns-nameservers 192.168.36.1

auto em2

iface em2 inet static

 address 10.0.0.1

 netmask 255.255.255.0

auto em3

iface em3 inet static

 address 10.0.1.1

 netmask 255.255.255.0

auto em4

iface em4 inet static

 address 10.0.2.1

 netmask 255.255.255.0

Make sure your network configuration allows you to access to Internet. Moreover if you use an http proxy

you should add the following configurations in order to download the recommended packages. Hereafter

how to set up your http proxy respectively for apt and wget commands:

jnpr@kvm:~$ more /etc/apt/apt.conf

Acquire::http::Proxy "http://<ip-proxy-@>:<port>/";

A VMX installation Guide www.junosandme.net – David Roy

26

jnpr@kvm:~$ more /home/jnpr/.wgetrc

http_proxy = http://<ip-proxy-@>:<port>/

use_proxy = on

wait = 15

Packages installation

The next step consists in installing the required packages. For low-application mode there are only few

packages to install. Nevertheless some libraries, already installed during the server installation, should be

updated to work with VMX. The recommended packages will be installed with the apt command. As

mentioned apt command requires an Internet connection. First of all, update from the Ubuntu repositories

the list of available packages:

jnpr@kvm:~$ sudo apt-get update

[…]

Fetched 215 kB in 9s (22.1 kB/s)

Reading package lists... Done

Then perform the installation of the recommended packages. You can do it one by one or in one line as

followed:

jnpr@kvm:~$ sudo apt-get install bridge-utils qemu-kvm libvirt-bin python numactl python-netifaces

vnc4server libyaml-dev python-yaml libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev

libxml2-dev libglib2.0-dev libnl-dev libnl-dev python-pip python-dev libxml2-dev libxslt-dev

Once all packages are installed, you can call back the above command. This is actually the best way to

check that all required packages are well installed:
jnpr@kvm:~$ sudo apt-get install bridge-utils qemu-kvm libvirt-bin python numactl python-netifaces

vnc4server libyaml-dev python-yaml libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev

libxml2-dev libglib2.0-dev libnl-dev libnl-dev python-pip python-dev libxml2-dev libxslt-dev

Reading package lists... Done

Building dependency tree

Reading state information... Done

Note, selecting 'libxslt1-dev' instead of 'libxslt-dev'

bridge-utils is already the newest version.

libpciaccess-dev is already the newest version.

libxslt1-dev is already the newest version.

libyajl-dev is already the newest version.

python is already the newest version.

python-dev is already the newest version.

python-netifaces is already the newest version.

libnl-dev is already the newest version.

libglib2.0-dev is already the newest version.

libnuma-dev is already the newest version.

libparted0-dev is already the newest version.

libvirt-bin is already the newest version.

libxml2-dev is already the newest version.

libyaml-dev is already the newest version.

python-yaml is already the newest version.

qemu-kvm is already the newest version.

numactl is already the newest version.

python-pip is already the newest version.

vnc4server is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.

Great! The last step is to check the version of libvirt. Libvirt is a collection of open source API, daemon

and management tools that provide a convenient way to manage virtual machines and other virtualization

functionalities such as storage and network interface management. Libvirt is used to manage KVM, Xen,

VMware ESX, QEMU and other popular virtualization technologies. The software components include:

 An API library,

 A daemon (libvirtd), and

 A command line utility (virsh).

To view which version is installed, you can call this command:

A VMX installation Guide www.junosandme.net – David Roy

27

jnpr@kvm:~$ libvirtd --version

libvirtd (libvirt) 1.2.2

The minimum version supported by VMX is libvirt 1.2.8. So you might need to adjust the version by

upgrading the libvirt package. First download with the wget command the sources of libvirt in a temporary

folder and decompress the package:
jnpr@kvm:/var/tmp$ cd /var/tmp/

jnpr@kvm:/var/tmp$ wget http://libvirt.org/sources/libvirt-1.2.8.tar.gz

jnpr@kvm:/var/tmp$ tar zxvf libvirt-1.2.8.tar.gz

jnpr@kvm:/var/tmp$ ls

libvirt-1.2.8 libvirt-1.2.8.tar.gz

Then, uninstall the previous version of libvirt:
jnpr@kvm:/var/tmp$ cd libvirt-1.2.8

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo ./configure --prefix=/usr/local --with-numactl

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo service libvirt-bin stop

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make uninstall

Once carried out, configure and install the libvirt 1.2.8 as followed:
jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo ./configure --prefix=/usr --localstatedir=/ --with-numactl

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make install

Finally, start the new version of libvirt and check if the right version is running:
jnpr@kvm:~$ sudo service libvirt-bin start

jnpr@kvm:~$ libvirtd --version

libvirtd (libvirt) 1.2.8

Sounds good! Your host OS is now ready to begin the installation of the VMX router. You can download

the VMX image from the Juniper website and put it on your home folder. Here we download the 15.1F4

installation package:
jnpr@kvm:~$ ls /home/jnpr/vmx-15.1F4.15.tgz

vmx-15.1F4.15.tgz

Prepare your “work folder” on Linux

VMX installation package contains several files and folders. If you wish to deploy several VMX instances

on the same server you should organize your “work folder” to avoid any mistake. We only provide here

some recommendations and you can organize your “work folder” as you wish.

Here we created four directories under our root folder /var/vRouters/

jnpr@kvm:/var/vRouters$ ls

dev-scripts junos vmx1 vmx2

dev-scripts

It will contain all the instance of vmx-junosdev.conf file. This file describes how virtual interfaces of

vmx instances are connected.

junos

This folder will group all vmx installation packages

vmx1

This folder will contain the specific configuration file of the vmx1 instance. This configuration file is

derived from the vmx.conf

http://libvirt.org/sources/libvirt-1.2.8.tar.gz

A VMX installation Guide www.junosandme.net – David Roy

28

vmx2

This folder will contain the specific configuration file of the vmx2 instance. This configuration file is

derived from the vmx.conf

In our case we wish to run two VMX routers this is why we only created two vmx

folders. You can create more than two vmx folders if needed.

Now, decompress the VMX package into the junos/ folder (here vmx-15.1F4.15.tgz):

jnpr@kvm:~$ sudo tar zxvf /home/jnpr/vmx-15.1F4.15.tgz --directory /var/vRouters/junos/

Now let’s analyze the content of the decompressed packages:

jnpr@kvm:/var/vRouters/junos$ ls vmx-15.1F4-3/

build config docs drivers env images scripts vmx.sh

As you can see there are several directories and one file: vmx.sh which is actually the main script provided

by Juniper to deploy and manage a VMX instance. Let’s have a look at the VMX package contents:

build

This directory will contain the built vmx instances.

config

This folder contains two templates of configuration. The vmx.conf is used to deploy the VMX VCP

and VFP virtual machines. It includes, among others, the name of the VMX instance, the source

images of the VCP and VFP VMs, the number of interfaces attached to the VFP. The second template

is vmx-junosdev.conf. This file allows creating interfaces binding. In other words how a virtual NIC of

the VFP is connected (to a physical interface, to a virtual bridge…).

docs

This folder includes some configuration file examples and documentation files.

drivers

This folder includes the modified source code of the ixgbe driver. This driver is needed for PCI-

Passthrough mode which is required by high-bandwidth applications.

env

It contains OS environment settings.

images

This folder includes the software image for VCP (jinstall-vmx*.img), the image file for VCP file

storage (vmxhdd.img) and the software image file for VFP (vFPC_*.img).

scripts

It includes all the Juniper Networks orchestration scripts that are called by the main script vmx.sh.

vmx.sh

The main orchestration script.

Understanding the VMX configuration file

The installation package is decompressed and your work folder is ready. Before deploying the first VMX

router we need to understand the config/vmx.conf file. This file will be used by the main orchestration

script to deploy your VMX. The vmx.conf file is implemented in YAML format: a human friendly

language. Some python scripts will then convert this file to several XML files used by libvirt for VM

deployment.

YAML (YAML Ain’t Markup) is a human friendly data serialization language. VMX config file uses YAML

because it’s as close to plain English as data serialization and configuration formats get. The advantage of

YAML is that it does not require curly braces, allowing you to omit quotation marks for strings in most cases,

A VMX installation Guide www.junosandme.net – David Roy

29

relying on indentation for structure, which makes it much more readable compared to XML. Important tips

about YAML: YAML relies on indentation to understand the data structure: use spaces instead of tabs, tabs

are not universally supported across implementations. It is also case sensitive. In short, every

space/indentation matters. Taking cautions when modifying the vmx.conf file. A good practice is to just

replace the parameters (numbers, image path, interface names, MAC, etc) and leave everything else intact.

So simply editing the file and have a look at some important lines:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# more config/vmx.conf

vmx.conf

Config file for vmx on the hypervisor.

Uses YAML syntax.

Leave a space after ":" to specify the parameter value.

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/vmxlite/images/jinstall64-vmx.img"

 routing-engine-hdd : "/home/vmx/vmxlite/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/vmxlite/images/vPFE.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 1024

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 6144

 vcpus : 3

 console_port: 8602

 device-type : virtio

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 mac-address : "02:06:0A:0E:FF:F0"

A VMX installation Guide www.junosandme.net – David Roy

30

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 interface"

 - interface : ge-0/0/2

 mac-address : "02:06:0A:0E:FF:F2"

 description : "ge-0/0/2 interface"

 - interface : ge-0/0/3

 mac-address : "02:06:0A:0E:FF:F3"

 description : "ge-0/0/3 interface"

Now, let’s clarify each line flagged with a number:

 Line (0): the identifier (ID) is the name of your vmx router. The VCP and VFP instances will be named

as followed: vcp-<ID> and vfp-<ID>

 Line (1): this is the current management interface of your server. This interface will be attached to the

virtual bridge br-ext.

 Line (2): the binary image of the VCP VM.

 Line (3): the binary image of the VCP hard disk.

 Line (4): the binary image of the VFP VM.

 Line (5): refer to the Figure , this is actually the virtual bridge that will interconnect the management

port of the server and the management interfaces of the VCP and VFP virtual machines.

 Line (6): this part describes the memory/cpu allocation and management parameters of the VCP virtual

machine. The console port is a port number bound to the localhost interface (127.0.0.1) of the server.

The IP address provided there is the address of the fxp0 interface.

 Line (7): this part describes the memory/cpu allocation and management parameters of the VFP virtual

machine. The console port is a port number bound to the localhost interface of the server. The IP

address provided there is the address of the eth0 interface.

 Line (8): this is a VFP specific statement. The device-type will determine which IO virtualization

technology for data plane interfaces will be used: it could be virtio or sriov mode.

 Line (9): this part describes how many virtual NICs are attached to the VFP virtual machine. The

naming of each interface has always this syntax: ge-0/0/x - independently of the real bandwidth of the

physical port. At this level we don’t precise if the virtual NIC is attached to a physical port or to a

virtual bridge. The MAC address of each interface should be unique among with all interfaces but also

among with all VMX instances running on the same server.

We are finally ready! No more theoretical explanation, let’s now deploy your first VMX on KVM.

Deploying a VMX instance with the orchestration script

Based on the config/vmx.conf template and the information provided by the Figure we are going to deploy

our first VMX router. The best way to instance a VMX is to duplicate the vmx.conf template in the target

router instance folder. In our case we just copy config/vmx.conf to /var/vRouters/vmx1/:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# cp config/vmx.conf ../../vmx1/

We have modified the vmx1/vmx.conf as followed in order to match the requirements provided by the

Figure :

jnpr@kvm:/var/vRouters# more vmx1/vmx.conf

vmx.conf

Config file for vmx on the hypervisor.

Uses YAML syntax.

A VMX installation Guide www.junosandme.net – David Roy

31

Leave a space after ":" to specify the parameter value.

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : em1

 routing-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/jinstall64-vmx-15.1F4.15-

domestic.img"

 routing-engine-hdd : "/var/vRouters/junos/vmx-15.1F4-3/images/vmxhdd.img"

 forwarding-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/vFPC-20151203.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 2048

 console_port: 10000

 interfaces :

 - type : static

 ipaddr : 192.168.1.2

 macaddr : "0A:00:DD:00:01:01"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 8192

 vcpus : 3

 console_port: 10001

 device-type : virtio

 interfaces :

 - type : static

 ipaddr : 192.168.1.21

 macaddr : "0A:00:DD:00:01:02"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 mac-address : "02:06:0A:00:01:01"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 mac-address : "02:06:0A:00:01:02"

 description : "ge-0/0/1 interface"

The instance will be named vmx1. The three images are located in /var/vRouters/junos/vmx-15.1F4-

3/images/ folder. The host-management-interface of our server is the em1 interface. As requested by the

table X-X, we allocate 1 vCPU and 2GB of memory for the VCP virtual machine and 3 vCPU and 8GB of

memory for the VFP VM. The 192.168.1.2 and 192.168.1.21 are respectively the management IP addresses

for the fxp0 interface of VCP VM and eth0 interface of VFP VM. The console port for VCP is 10000 and

10001 for VFP. The virtualization technology uses for VFP network I/O is virtio. We also configure two

A VMX installation Guide www.junosandme.net – David Roy

32

virtual NIC attached to VFP: ge-0/0/0 and ge-0/0/1. We will see later how to connect these interfaces to a

physical port or a virtual bridge.

One word about MAC addresses: As mentioned, you should configure unique MAC addresses. We use this

convention to allocate the MAC addresses:

- For the management interface of VCP and VFP we use the following MAC template:

0A:00:DD:00:XX:YY where XX represents the number of the VMX instance (here above instance

number 1) and YY is an incremental counter to allocate a MAC address to VCP and VFP virtual

machines. We use here YY=01 for VCP and YY=02 for VFP.

- For data plane interfaces attached to the VFP virtual machine we use the following MAC template:

02:06:0A:00:XX:YY where XX represents the number of the VMX instance (here above instance

number 1) and YY is an incremental counter to allocate a MAC address for each virtual NIC attached to

the VFP instance. We use here YY=01 for ge-0/0/0 and YY=02 for ge-0/0/1

We will use the vmx.sh main orchestration script to deploy the vmx1 configuration. Before deploying our

vmx1 router, just call this script without any parameter to show the help. As you see the help is enough

explicit and no need to explain more each option:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh

Usage: vmx.sh [CONTROL OPTIONS]

 vmx.sh [LOGGING OPTIONS] [CONTROL OPTIONS]

 vmx.sh [JUNOS-DEV BIND OPTIONS]

 vmx.sh [CONSOLE LOGIN OPTIONS]

 CONTROL OPTIONS:

 --install : Install And Start VMX

 --start : Start VMX

 --stop : Stop VMX

 --restart : Restart VMX

 --status : Check Status Of VMX

 --cleanup : Stop VMX And Cleanup Build Files

 --cfg <file> : Override With The Specified vmx.conf File

 --env <file> : Override With The Specified Environment .env File

 --build <directory> : Override With The Specified Directory for Temporary Files

 --help : This Menu

 LOGGING OPTIONS:

 -l : Enable Logging

 -lv : Enable Verbose Logging

 -lvf : Enable Foreground Verbose Logging

 JUNOS-DEV BIND OPTIONS:

 --bind-dev : Bind Junos Devices

 --unbind-dev : Unbind Junos Devices

 --bind-check : Check Junos Device Bindings

 --cfg <file> : Override With The Specified vmx-junosdev.conf File

 CONSOLE LOGIN OPTIONS:

 --console [vcp|vfp] [vmx_id] : Login to the Console of VCP/VFP

 VFP Image OPTIONS:

 --vfp-info <VFP Image Path> : Display Information About The Specified vFP image

Copyright(c) Juniper Networks, 2015

We have just highlighted three options on the previous output. Indeed, the aim it’s to install (--install

option) the VMX router based on the specific vmx1/vmx.conf file (--cfg option). The last option (-lv)

just enables the verbose mode and might be useful to troubleshoot installation when this one failed. Let’s

start! The output has been truncated to avoid too many pages of logs:

 jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh -lv --install --cfg ../../vmx1/vmx.conf

==

 Welcome to VMX

A VMX installation Guide www.junosandme.net – David Roy

33

==

Date..03/13/16 17:19:49

VMX Identifier....................................vmx1

Config file......................................./var/vRouters/vmx1/vmx.conf

Build Directory.................................../var/vRouters/junos/vmx-15.1F4-3/build/vmx1

Environment file................................../var/vRouters/junos/vmx-15.1F4-

3/env/ubuntu_virtio.env

Junos Device Type.................................virtio

[…]

==

 VMX Status Verification Completed.

==

Log file..

 /var/vRouters/junos/vmx-15.1F4-3/build/vmx1/logs/vmx_1457885989.log

==

 Thankyou for using VMX

==

Awesome! Our first VMX router has been successfully installed. Let’s check the build folder to verify that

the vmx1 is well created:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# ls -li build/

total 4

34865854 drwxr-xr-x 5 root root 4096 Mar 13 17:19 vmx1

You could play with the virsh command line (provided by the libvirt package) in order to check if the

two virtual machines have been installed as expected and know their status:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo virsh list

 Id Name State

--

 2 vcp-vmx1 running

 3 vfp-vmx1 running

As seen the two virtual machines are currently running. You can retrieve detailed information such as the

number of vCPU or the memory allocated of each virtual machine with another virsh option. Just provide

the instance ID as parameter, retrieved with the previous command):

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# virsh dominfo 3

Id: 3

Name: vfp-vmx1

UUID: 502f910c-8b08-4737-8945-6254a4bc9c1b

OS Type: hvm

State: running

CPU(s): 3

CPU time: 24.4s

Max memory: 8000512 KiB

Used memory: 8000000 KiB

Persistent: yes

Autostart: disable

Managed save: no

Security model: none

Security DOI: 0

Now, let’s check the status of the virtual NICs and virtual bridges. Indeed, the vmx.sh script has created

several virtual NICs and bridges based on the vmx.conf file. The command to manage virtual bridges is

brctl:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo brctl show

bridge name bridge id STP enabled interfaces

br-ext 8000.d89d67767e18 yes br-ext-nic

 em1

 vcp_ext-vmx1

 vfp_ext-vmx1

br-int-vmx1 8000.52540002a198 yes br-int-vmx1-nic

 vcp_int-vmx1

A VMX installation Guide www.junosandme.net – David Roy

34

 vfp_int-vmx1

virbr0 8000.fe060a000101 yes ge-0.0.0-vmx1

 ge-0.0.1-vmx1

First of all, as you can see, it is very simple to retrieve which interface or bridge is attached to which VMX

instance. Indeed, each virtual network item is suffixed with the name of the VMX: here the vmx1.

The orchestration script has created two management interfaces, one for VCP and another one for VFP.

These interfaces are respectively named: vcp_ext-vmx1 and vfp_ext-vmx1. These two interfaces are

actually mapped to fxp0 and eth0 interfaces. These interfaces are attached, with the management interface

of the server itself (em1), to a virtual bridge br-ext. This one will provide you the ability to access to your

VCP and VFP virtual machines through the out-of-band management network. The script also created two

other internal interfaces vcp_int-vmx1 and vfp_int-vmx1. The two interfaces refer to the em1 and eth1

interfaces of the VCP and VFP virtual machines. The two internal interfaces are connected together via a

dedicated virtual bridge named br-int-vmx1. Finally, we find back our two data plane interfaces ge-0/0/0

and ge-0/0/1 respectively identified as ge-0.0.0-vmx1 and ge-0.0.1-vmx1. These two interfaces are attached

to the bridge virbr0. What does it mean? The virbr0 is the default bridge. As mentioned the binding of data

plane interfaces is not performed during the installation. This will be done during the next step. Thus, by

waiting their binding, the data plane interfaces are attached to the default bridge.

You can also retrieve some interesting information related to the virtual interfaces with the ip command:

jnpr@kvm:/home/iptac# sudo ip link | grep vmx1

20: br-int-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT

group default

21: br-int-vmx1-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast master br-int-vmx1 state DOWN

mode DEFAULT group default qlen 500

22: vcp_ext-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br-ext state

UNKNOWN mode DEFAULT group default qlen 500

23: vcp_int-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br-int-vmx1

state UNKNOWN mode DEFAULT group default qlen 500

24: vfp_ext-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br-ext state

UNKNOWN mode DEFAULT group default qlen 500

25: vfp_int-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br-int-vmx1

state UNKNOWN mode DEFAULT group default qlen 500

26: ge-0.0.0-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master virbr0 state

UNKNOWN mode DEFAULT group default qlen 500

27: ge-0.0.1-vmx1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master virbr0 state

UNKNOWN mode DEFAULT group default qlen 500

Binding physical devices to VFP

The final step to achieve our vmx1 installation is to bind the data plane interfaces to the right physical port

or virtual bridge. Based on the Figure the ge-0/0/0 should be attached to the physical port em2 and the ge-

0/0/1 to a virtual bridge named br-inter-vmx. These tasks are one more time carried out through the main

orchestration script vmx.sh. This time, we use another configuration file and options. To proceed to

interface binding you must first edit the following file:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# ls config/vmx-junosdev.conf

config/vmx-junosdev.conf

As we did with the vmx.conf template, it is recommend to create a copy of this default file. We had decided

to place the interface binding specific files in the dev-script/ folder. This is done as followed:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# cp config/vmx-junosdev.conf ../../dev-scripts/vmx1-

dev.conf

Now, let’s edit the vmx1-dev.conf file. Remember it is currently just a copy of the original file:

jnpr@kvm:/var/vRouters# more dev-scripts/vmx1-dev.conf

vmx-junos-dev.conf

- Config file for junos device bindings.

- Uses YAML syntax.

- Leave a space after ":" to specify the parameter value.

A VMX installation Guide www.junosandme.net – David Roy

35

- For physical NIC, set the 'type' as 'host_dev'

- For junos devices, set the 'type' as 'junos_dev' and

set the mandatory parameter 'vm-name' to the name of

the vPFE where the device exists

- For bridge devices, set the 'type' as 'bridge_dev'

interfaces :

 - link_name : vmx_link1

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/0

 endpoint_2 :

 - type : bridge_dev

 dev_name : bridge1

 - link_name : vmx_link2

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/0

 endpoint_2 :

 - type : bridge_dev

 dev_name : bridge1

 - link_name : vmx_link3

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/1

 endpoint_2 :

 - type : host_dev

 dev_name : eth3

 - link_name : vmx_link4

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/2

 endpoint_2 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/2

This file uses also the YAML language so take caution with indentation and YAML

restrictions.

A device binding is identified uniquely by a link_name. Each link_name is made of two endpoints.

There are currently three types of endpoint:

 junos_dev: a virtual NIC attached to a given VMX. A junos_dev endpoint requires to specify

vm_name – the VMX unique name declared in the vmx.conf file during the installation – and the

dev_name – a data plane interface attached to the VFP; interface also declared in the vmx.conf file.

 bridge_dev: the endpoint is a virtual bridge. If the bridge is not present the orchestration script will

create it before.

 host_dev: the endpoint is a physical port of the server.

A VMX installation Guide www.junosandme.net – David Roy

36

Based on these information we could easily deduced with connections would be established if we try to use

the default template file:

 For link vmx_link1: the main script will connect the ge-0/0/0 interface of the VMX vmx1 to the virtual

bridge bridge1.

 For link vmx_link2: the script will attach the ge-0/0/0 interface of the VMX vmx2 to the virtual bridge

bridge1.

 For link vmx_link3: the main script will connect the ge-0/0/1 interface of the VMX vmx1 to the

physical port eth3.

 For link vmx_link4: the script will attach the ge-0/0/2 interface of the VMX vmx1 to the interface ge-

0/0/2 of the VMX vmx2. This is a direct link which simulates a virtual crossed cable.

The following figure illustrated this sample topology:

Figure . The default interface binding configuration.

Now, let’s modify the vmx1-dev.conf in order to match our requirements:

jnpr@kvm:/var/vRouters/dev-scripts# more vmx1-dev.conf

vmx-junos-dev.conf

- Config file for junos device bindings.

- Uses YAML syntax.

- Leave a space after ":" to specify the parameter value.

- For physical NIC, set the 'type' as 'host_dev'

- For junos devices, set the 'type' as 'junos_dev' and

set the mandatory parameter 'vm-name' to the name of

the vPFE where the device exists

- For bridge devices, set the 'type' as 'bridge_dev'

interfaces :

 - link_name : vmx1_link1

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/0

A VMX installation Guide www.junosandme.net – David Roy

37

 endpoint_2 :

 - type : host_dev

 dev_name : em2

 - link_name : vmx1_link2

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/1

 endpoint_2 :

 - type : bridge_dev

 dev_name : br-inter-vmx

We want here to create two links: the first one to attach the ge-0/0/0 interface to the physical port em2 and

the second one to connect the ge-0/0/1 interface to the virtual bridge br-inter-vmx. The next step is to use

the orchestration script to make the binding based on this above configuration file:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --bind-dev --cfg ../../dev-scripts/vmx1-

dev.conf

Checking package ethtool..........................[OK]

Bind Link vmx1_link1(ge-0.0.0-vmx1, em2)..........[OK]

Numa node for em2.................................0

Cores servicing numa node 0.......................0-3

Pid of vfp-vmx1...................................41402

Pin vhost-41402 (PID=41406) to cores 0-3..........[OK]

Pin vhost-41402 (PID=41405) to cores 0-3..........[OK]

Pin vhost-41402 (PID=41404) to cores 0-3..........[OK]

Pin vhost-41402 (PID=41403) to cores 0-3..........[OK]

Bind Bridge port br-inter-vmx(ge-0.0.1-vmx1)......[OK]

All seems to have worked as expected. To double check the interfaces binding you should use one more

time the orchestration script with another option:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --bind-check --cfg ../../dev-

scripts/vmx1-dev.conf

Checking package ethtool..........................[OK]

Check Link vmx1_link1(ge-0.0.0-vmx1, em2).........[OK]

Check Bridge port br-inter-vmx(ge-0.0.1-vmx1).....[OK]

Great! Another way is to use the brclt command. Remember, before performing the interfaces binding,

the data plane interfaces of vmx1 were attached to the default bridge virbr0. Now, the em2 and ge-0/0/0

interface are linked together and ge-0/0/1 is connected to the new bridge br-int-vmx1:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# brctl show

bridge name bridge id STP enabled interfaces

br-ext 8000.d89d67767e18 yes br-ext-nic

 em1

 vcp_ext-vmx1

 vfp_ext-vmx1

br-int-vmx1 8000.52540079f281 yes br-int-vmx1-nic

 vcp_int-vmx1

 vfp_int-vmx1

br-inter-vmx 8000.fe060a000102 no ge-0.0.1-vmx1

virbr0 8000.000000000000 yes

vmx1_link1 8000.d89d67767e19 no em2

 ge-0.0.0-vmx1

All is done for vmx1. It’s time to access to the VMX and perform the initial configurations and checks.

Access to VMX and initial configuration of VMX

The first access to your VMX router is done through the virtual console port. Remember you specified a

console port number for both VCP and VFP virtual machines. The ports were respectively 10000 and

10001 for VCP and VFP. There are two methods to access to your VMX via its console port:

A VMX installation Guide www.junosandme.net – David Roy

38

 By using the orchestration script as followed. Here you must specify for which VMX instance and

which virtual machine (VCP or VFP) you want to access:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --console vcp vmx1

--

Login Console Port For vcp-vmx1 - 10000

Press Ctrl-] to exit anytime

--

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Amnesiac (ttyd0)

login:

 Or simply use the telnet command targeting the localhost and the configured console port. Hereafter to

access to VCP:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# telnet localhost 10000

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Amnesiac (ttyd0)

login:

To exist the console mode just press Ctrl^] keys.

The default user is root with no password. Then enter in cli mode like that:

Amnesiac (ttyd0)

login: root

--- JUNOS 15.1F4.15 built 2015-12-23 20:22:39 UTC

root@% cli

root>

You should first see that one FPC is detected:

root> show chassis fpc

 Temp CPU Utilization (%) CPU Utilization (%) Memory Utilization (%)

Slot State (C) Total Interrupt 1min 5min 15min DRAM (MB) Heap Buffer

 0 Online Absent 0 0 0 0 0 0 0 0

root> show chassis hardware

Hardware inventory:

Item Version Part number Serial number Description

Chassis VMX755c VMX

Midplane

Routing Engine 0 RE-VMX

CB 0 VMX SCB

CB 1 VMX SCB

FPC 0 Virtual FPC

 CPU Rev. 1.0 RIOT 123XYZ987

After adding the license you should do now some initial configurations as we did for VMX on ESXi:

[edit]

root# set chassis fpc 0 pic 0 number-of-ports 8

A VMX installation Guide www.junosandme.net – David Roy

39

root# set chassis fpc 0 pic 0 interface-type ?

Possible completions:

 et Prefix interfaces as et

 ge Prefix interfaces as ge

 xe Prefix interfaces as xe

[edit]

root# set chassis fpc 0 pic 0 interface-type ge

[edit]

root# set system host-name vmx1

root# set system root-authentication plain-text-password

New password:

Retype new password:

root# set system login user lab authentication plain-text-password

New password:

Retype new password:

[edit]

root# set system login user lab class super-user

[edit]

root# set interfaces fxp0 unit 0 family inet address 192.168.1.2/24

Once the following configuration committed you can check interfaces status:

root@vmx1> show interfaces terse | match ge-

ge-0/0/0 up up

ge-0/0/1 up up

ge-0/0/2 up down

ge-0/0/3 up down

ge-0/0/4 up down

ge-0/0/5 up down

ge-0/0/6 up down

ge-0/0/7 up down

As observed, only two interfaces are UP as we installed a VMX with only two data plane interfaces. The

initial configuration is finished. You can now play with the vmx1 as a classical MX. The following steps

will allow you to create a second VMX and interconnect it to the vmx1.

Interconnect two VMX instances

We are now installing a new VMX router named vmx2. We will move faster as all steps have been

described in detail for vmx1. First we create a new configuration file derived from the default template:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# cp config/vmx.conf ../../vmx2/

The configuration file of vmx2 is the following:

jnpr@kvm:/var/vRouters/vmx2# more vmx.conf

vmx.conf

Config file for vmx on the hypervisor.

Uses YAML syntax.

Leave a space after ":" to specify the parameter value.

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx2 # Maximum 4 characters

 host-management-interface : em1

 routing-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/jinstal

l64-vmx-15.1F4.15-domestic.img"

A VMX installation Guide www.junosandme.net – David Roy

40

 routing-engine-hdd : "/var/vRouters/junos/vmx-15.1F4-3/images/vmxhdd.

img"

 forwarding-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/vFPC-20

151203.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 2048

 console_port: 20000

 interfaces :

 - type : static

 ipaddr : 192.168.1.3

 macaddr : "0A:00:DD:00:02:01"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 8192

 vcpus : 3

 console_port: 20001

 device-type : virtio

 interfaces :

 - type : static

 ipaddr : 192.168.1.22

 macaddr : "0A:00:DD:00:02:02"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 mac-address : "02:06:0A:00:02:01"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 mac-address : "02:06:0A:00:02:02"

 description : "ge-0/0/1 interface"

As shown, we modified the identifier, the management IP addresses and console ports and the MAC

addresses that should be unique. Then, we proceed to the deployment of this second VMX instance:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh -lv --install --cfg ../../vmx2/vmx.conf

==

 Welcome to VMX

==

Date..03/15/16 17:11:15

VMX Identifier....................................vmx2

[…]

==

 VMX Status Verification Completed.

==

Log file..

 /var/vRouters/junos/vmx-15.1F4-3/build/vmx2/logs/vmx_1458058275.log

==

 Thankyou for using VMX

A VMX installation Guide www.junosandme.net – David Roy

41

==

Installation has been done with success. Let’s check how many virtual machines are currently running:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo virsh list

 Id Name State

--

 2 vcp-vmx1 running

 3 vfp-vmx1 running

 5 vcp-vmx2 running

 6 vfp-vmx2 running

As expected, there are four virtual machines which run. The next step consists in performing the interfaces

binding of the vmx2. For that we derive from the file vmx-junosdev.conf this following file:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# cp config/vmx-junosdev.conf ../../dev-scripts/vmx2-

dev.conf

Once modified the file vmx2-dev.conf looks like that:

jnpr@kvm:/var/vRouters/dev-scripts# more vmx2-dev.conf

vmx-junos-dev.conf

- Config file for junos device bindings.

- Uses YAML syntax.

- Leave a space after ":" to specify the parameter value.

- For physical NIC, set the 'type' as 'host_dev'

- For junos devices, set the 'type' as 'junos_dev' and

set the mandatory parameter 'vm-name' to the name of

the vPFE where the device exists

- For bridge devices, set the 'type' as 'bridge_dev'

interfaces :

 - link_name : vmx2_link1

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/0

 endpoint_2 :

 - type : host_dev

 dev_name : em3

 - link_name : vmx2_link2

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/1

 endpoint_2 :

 - type : bridge_dev

 dev_name : br-inter-vmx

As required by the Figure , the ge-0/0/0 interface of vmx2 is attached to the physical port em3 and the

interface ge-0/0/1 to the virtual bridge br-inter-vmx. Let’s proceed to the interfaces binding:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --bind-dev --cfg ../../dev-scripts/vmx2-

dev.conf

Checking package ethtool..........................[OK]

Bind Link vmx2_link1(ge-0.0.0-vmx2, em3)..........[OK]

Numa node for em3.................................0

Cores servicing numa node 0.......................0-3

Pid of vfp-vmx2...................................1875

A VMX installation Guide www.junosandme.net – David Roy

42

Pin vhost-1875 (PID=1879) to cores 0-3............[OK]

Pin vhost-1875 (PID=1878) to cores 0-3............[OK]

Pin vhost-1875 (PID=1877) to cores 0-3............[OK]

Pin vhost-1875 (PID=1876) to cores 0-3............[OK]

Bind Bridge port br-inter-vmx(ge-0.0.1-vmx2)......[OK]

You can check the status of the interfaces binding for vmx2 and finally have a look at bridge status to

validate that there is no more interfaces attached to the default bridge virbr0:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --bind-check --cfg ../../dev-

scripts/vmx2-dev.conf

Checking package ethtool..........................[OK]

Check Link vmx2_link1(ge-0.0.0-vmx2, em3).........[OK]

Check Bridge port br-inter-vmx(ge-0.0.1-vmx2).....[OK]

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# brctl show

bridge name bridge id STP enabled interfaces

br-ext 8000.d89d67767e18 yes br-ext-nic

 em1

 vcp_ext-vmx1

 vcp_ext-vmx2

 vfp_ext-vmx1

 vfp_ext-vmx2

br-int-vmx1 8000.525400f2abb7 yes br-int-vmx1-nic

 vcp_int-vmx1

 vfp_int-vmx1

br-int-vmx2 8000.525400f7bd13 yes br-int-vmx2-nic

 vcp_int-vmx2

 vfp_int-vmx2

br-inter-vmx 8000.fe060a000102 no ge-0.0.1-vmx1

 ge-0.0.1-vmx2

virbr0 8000.000000000000 yes

vmx1_link1 8000.d89d67767e19 no em2

 ge-0.0.0-vmx1

vmx2_link1 8000.d89d67767e1a no em3

 ge-0.0.0-vmx2

As shown the two VMX routers are now internally connected together through the virtual bridge br-inter-

vmx. The interface ge-0/0/0 of both VMX is attached to a physical port of the server. We access to our

vmx2 via its console port and fill the same initial configuration as the vmx1:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --console vcp vmx2

login: root

--- JUNOS 15.1F4.15 built 2015-12-23 20:22:39 UTC

root@% cli

root> edit

Entering configuration mode

[edit]

root# set chassis fpc 0 pic 0 number-of-ports 8

[edit]

root# set chassis fpc 0 pic 0 interface-type ge

[edit]

root# set system host-name vmx2

[edit]

root# set system root-authentication plain-text-password

[edit]

root# set system login user lab authentication plain-text-password

[edit]

A VMX installation Guide www.junosandme.net – David Roy

43

root# set system login user lab class super-user

[edit]

root# set interfaces fxp0 unit 0 family inet address 192.168.1.3/24

To finalize our setup and based on the addressing of the Figure we will try to establish two OSPF

adjacencies. The configuration of vmx1 and vmx2 is derived from this configuration – only IP addresses

are different:

interfaces {

 ge-0/0/0 {

 unit 0 {

 family inet {

 address 10.1.1.x/30;

 }

 }

 }

 ge-0/0/1 {

 unit 0 {

 family inet {

 address 10.1.1.x/30;

 }

 }

 }

 lo0 {

 unit 0 {

 family inet {

 address 172.16.20.x/32;

 }

 }

 }

}

protocols {

 ospf {

 area 0.0.0.0 {

 interface ge-0/0/0.0 {

 interface-type p2p;

 }

 interface ge-0/0/1.0 {

 interface-type p2p;

 }

 interface lo0.0 {

 passive;

 }

 }

 }

}

Once committed on both VMX we can finally check the OSPF neighbors. Remember that physical ports

em2 and em3 are connected to a crossed cable:

root@vmx1> show ospf neighbor

Address Interface State ID Pri Dead

10.1.1.2 ge-0/0/0.0 Full 172.16.20.2 128 39

10.1.1.6 ge-0/0/1.0 Full 172.16.20.2 128 32

Awesome, isn’t it? Our two VMX for low-bandwidth applications are now running and both pure virtual

interfaces and physical interfaces are operational as shown by the status of two OSPF adjacencies.

Start / Stop / Restart / Remove a VMX instance

You can easily start, stop or restart a VMX instance by using the orchestration script. To stop a given VMX

router just proceed as followed:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --stop --cfg ../../vmx2/vmx.conf

A VMX installation Guide www.junosandme.net – David Roy

44

Don’t forget to provide the configuration file of the given VMX router in parameter.

To start or restart a VMX router let’s do like that:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --start --cfg ../../vmx2/vmx.conf

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --restart --cfg ../../vmx2/vmx.conf

Finally you can remove a VMX instance which includes:

 Removing the virtual machines associated: the VCP and VFP

 Removing virtual interfaces

Here, we want to remove vmx. For that we use the cleanup option:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --cleanup --cfg ../../vmx2/vmx.conf

==

 Welcome to VMX

==

Date..03/15/16 17:54:34

VMX Identifier....................................vmx2

[…]

==

 VMX Stop Completed

==

Cleanup auto-generated files......................[OK]

==

 VMX Cleanup Completed

==

Log file../dev/null

==

 Thankyou for using VMX

==

You can check the current running virtual machines:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo virsh list

 Id Name State

--

 2 vcp-vmx1 running

 3 vfp-vmx1 running

vmx2 associated virtual machines have been removed. To finish the cleaning process, just unbind the

interfaces of the vmx2:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh --unbind-dev --cfg ../../dev-

scripts/vmx2-dev.conf

Checking package ethtool..........................[OK]

Unbind Link vmx2_link1(ge-0.0.0-vmx2, em3)........[OK]

Unbind Bridge port br-inter-vmx(ge-0.0.1-vmx2)....[OK]

Don’t forget to provide the right device file of the given VMX router in parameter.

The brctl command shows you that there is no more interface and links related to the vmx2 router:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# brctl show

bridge name bridge id STP enabled interfaces

br-ext 8000.d89d67767e18 yes br-ext-nic

 em1

 vcp_ext-vmx1

 vfp_ext-vmx1

br-int-vmx1 8000.525400f2abb7 yes br-int-vmx1-nic

 vcp_int-vmx1

 vfp_int-vmx1

br-inter-vmx 8000.fe060a000102 no ge-0.0.1-vmx1

virbr0 8000.000000000000 yes

vmx1_link1 8000.d89d67767e19 no em2

A VMX installation Guide www.junosandme.net – David Roy

45

 ge-0.0.0-vmx1

Installing VMX for high-bandwidth applications

In this part we will focus on the installation of VMX for high-bandwidth applications. When a use case

requires more than 3Gbps of traffic you have to switch to a specific configuration of the VMX. Moreover

some specifics hardware capabilities become mandatory and some system adjustments will be required. As

of Junos 15.1, performance mode for high-bandwidth applications is only supported on Linux/KVM.

Server and host OS requirements

There are some hardware and software requirements for high-bandwidth applications which are:

 Processor has to support VT-d/IOMMU feature.

 Make sure your server supports SR-IOV. This feature must be enabled. This is a BIOS setting

example:

Figure . SR-IOV BIOS configuration.

 The interface module must use Intel 82599 10GE controller with Intel x520, x540 or x560 adapters.

 VT-d/IOMMU feature must be enabled on your host OS.

 For multicast support and IXGBE driver compilation: the host OS Kernel must use the version 3.13.0-

32

 For multicast support: The 10GE NIC driver should use the Juniper ixgbe driver.

 The HyperThreading feature is recommended for better performances at high rate. This feature should

be enabled at the BIOS level:

HyperThreading: This feature allows a single physical core to behave as two logical cores. In this

configuration a core can execute two threads at the same time. Notice that this does not double the

performance. The VMX release requires HyperThreading to be enabled to support the flowcache feature.

This HyperThreading function is not mandatory and is checked by the orchestration script during the

installation procedure.

A VMX installation Guide www.junosandme.net – David Roy

46

Figure . HyperThreading option in the BIOS.

Host OS and KVM installation

The first step is to adjust your BIOS setting by enabling VT-d/IOMMU, SR-IOV and if supported the

HyperThreading functions. Then, you have to install the Ubuntu 14.04 LTS as host OS. As for low-

bandwidth applications, make sure you choose the “Server” distribution and you select the “Virtual

Machine Host” package during the installation procedure.

Once your Ubuntu OS is installed you need first to install and enable a specific Linux Kernel. Currently the

ixgbe driver coming with Ubuntu does not work with virtual routers. The main issue is lack of multicast

support on ingress - packet received on a Virtual Function (VF) will be discarded silently and won’t be

delivered into the guest VM, an example of the immediate effect of this is that OSPF (and most of today’s

IGP) neighborship won’t come up. Therefore building VMX based on SR-IOV requires compiling the

ixgbe kernel driver from source code, which is provided by Juniper to fix the multicast support. The code is

available in the installation package.

At the time of writing the book there is problem to compile ixgbe from source code under

any kernels other than 3.13.0-32-generic. That’s why the kernel needs to be changed in

this setup. Nevertheless, if you don’t need to handle multicast traffic (control and data

planes) you can bypass the kernel upgrade step and ixgbe recompilation.

No worries! Changing a Linux Kernel is not complex anymore. You have to simply download and install

the required Kernel with the apt command:

jnpr@kvm:~$ sudo sudo apt-get install linux-firmware linux-image-3.13.0.32-generic linux-image-

extra-3.13.0.32-generic

Let’s then modify the file /boot/grub/grub.cfg. Indeed, to force grub to boot first on the Linux Kernel

3.13.0-32 you have to move on top of the list the menuentry referring to Linux 3.12.0-32. Actually just

move the block of config just after this line: export linux_gfx_mode

For our server this looks like as followed:

jnpr@kvm:~$ more /boot/grub/grub.cfg

[…]

else

A VMX installation Guide www.junosandme.net – David Roy

47

 set linux_gfx_mode=text

fi

export linux_gfx_mode

menuentry 'Ubuntu, with Linux 3.13.0-32-generic (recovery mode)' --class ubuntu --class gnu-linux

--class gnu --class os $menuentry_id_option 'gnulinu

x-3.13.0-32-generic-recovery-f97821ef-f320-4341-a7dc-00a656b2afc9' {

 recordfail

 load_video

 insmod gzio

 insmod part_msdos

 insmod ext2

 set root='hd0,msdos1'

 if [x$feature_platform_search_hint = xy]; then

 search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-

efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 f97821ef-f320-4341-a7dc-

00a656b2afc9

 else

 search --no-floppy --fs-uuid --set=root f97821ef-f320-4341-a7dc-00a656b2afc9

 fi

 echo 'Loading Linux 3.13.0-32-generic ...'

 linux /boot/vmlinuz-3.13.0-32-generic root=UUID=f97821ef-f320-4341-a7dc-

00a656b2afc9 ro recovery nomodeset

 echo 'Loading initial ramdisk ...'

 initrd /boot/initrd.img-3.13.0-32-generic

 }

Once your Linux Kernel is upgraded you have to enable VT-d/IOMMU on your host OS kernel. This is

simply done like that. Just add a configuration line:

jnpr@kvm:~# sudo echo 'GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on pci=realloc"' >>

/etc/default/grub

And then check that the line has been added:

jnpr@kvm:/home/iptac# grep -i iommu /etc/default/grub

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on pci=realloc"

Then update grub as followed:

jnpr@kvm:~# sudo update-grub

Finally reboot your server. Now let’s do some checks. First check the version of your kernel which should

be 3.13.0-32:

jnpr@kvm:~$ uname -a

Linux kvm 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64

GNU/Linux

You could check that IOMMU has been well enabled by looking at parameters passed to the kernel at the

time it is started. You should have the intel_iommu option passed and set to “on”:

jnpr@kvm:~# cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-3.13.0-32-generic root=UUID=f97821ef-f320-4341-a7dc-00a656b2afc9 ro

intel_iommu=on pci=realloc

Packages installation

The next step consists in installing the required packages. As for low-application mode there are some

required packages to install. First of all, update from the Ubuntu repositories the list of available packages:

jnpr@kvm:~$ sudo apt-get update

[…]

Fetched 215 kB in 9s (22.1 kB/s)

Reading package lists... Done

Then perform the installation of the recommended packages. You can do it one by one or in one line (as

followed):

A VMX installation Guide www.junosandme.net – David Roy

48

jnpr@kvm:~$ sudo apt-get install bridge-utils qemu-kvm libvirt-bin python numactl python-netifaces

vnc4server libyaml-dev python-yaml libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev

libxml2-dev libglib2.0-dev libnl-dev libnl-dev python-pip python-dev libxml2-dev libxslt-dev

Once all packages are installed, you can call back the above command. This is actually the best way to

check that all required packages are well installed:
jnpr@kvm:~$ sudo apt-get install bridge-utils qemu-kvm libvirt-bin python numactl python-netifaces

vnc4server libyaml-dev python-yaml libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev

libxml2-dev libglib2.0-dev libnl-dev libnl-dev python-pip python-dev libxml2-dev libxslt-dev

Reading package lists... Done

Building dependency tree

Reading state information... Done

Note, selecting 'libxslt1-dev' instead of 'libxslt-dev'

bridge-utils is already the newest version.

libpciaccess-dev is already the newest version.

libxslt1-dev is already the newest version.

libyajl-dev is already the newest version.

python is already the newest version.

python-dev is already the newest version.

python-netifaces is already the newest version.

libnl-dev is already the newest version.

libglib2.0-dev is already the newest version.

libnuma-dev is already the newest version.

libparted0-dev is already the newest version.

libvirt-bin is already the newest version.

libxml2-dev is already the newest version.

libyaml-dev is already the newest version.

python-yaml is already the newest version.

qemu-kvm is already the newest version.

numactl is already the newest version.

python-pip is already the newest version.

vnc4server is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.

As for low-application check your libvirt version and update it if needed. To view the current version of

libvirt installed:
jnpr@kvm:~$ libvirtd --version

libvirtd (libvirt) 1.2.2

The minimum version supported by VMX is libvirt 1.2.8. So you might need to adjust the version by

upgrading the libvirt package. First download with the wget command the sources of libvirt in a temporary

folder and decompress the package:
jnpr@kvm:/var/tmp$ cd /var/tmp/

jnpr@kvm:/var/tmp$ wget http://libvirt.org/sources/libvirt-1.2.8.tar.gz

jnpr@kvm:/var/tmp$ tar zxvf libvirt-1.2.8.tar.gz

jnpr@kvm:/var/tmp$ ls

libvirt-1.2.8 libvirt-1.2.8.tar.gz

Then, uninstall the previous version of libvirt:
jnpr@kvm:/var/tmp$ cd libvirt-1.2.8

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo ./configure --prefix=/usr/local --with-numactl

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo service libvirt-bin stop

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make uninstall

Once carried out, configure and install the libvirt 1.2.8 as followed:
jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo ./configure --prefix=/usr --localstatedir=/ --with-numactl

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make

jnpr@kvm:/var/tmp/libvirt-1.2.8$ sudo make install

Finally, start the new version of libvirt and check if the right version is installed:

http://libvirt.org/sources/libvirt-1.2.8.tar.gz

A VMX installation Guide www.junosandme.net – David Roy

49

jnpr@kvm:~$ sudo service libvirt-bin start

jnpr@kvm:~$ libvirtd --version

libvirtd (libvirt) 1.2.8

You can download the VMX image from the Juniper web site and put it on your home folder. Here we

download the 15.1F4 installation package:
jnpr@kvm:~$ ls /home/jnpr/vmx-15.1F4.15.tgz

vmx-15.1F4.15.tgz

We will organize our “work folder” as for a low-bandwidth applications use case. Please,

refer to this paragraph for more information.

The 10GE NIC driver for VMX

In our server we have installed an Intel 82599 10GE controller with a 2x10GE ports HP 560M adapter. As

shown below we still have our four 1GE ports but also two new 10GE ports, named p2p1 and p2p2 as

displayed by ifconfig command:

root@kvm:~# ifconfig -a

em1 Link encap:Ethernet HWaddr d8:9d:67:76:7e:18

 inet6 addr: fe80::da9d:67ff:fe76:7e18/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:258229 errors:0 dropped:0 overruns:0 frame:0

 TX packets:530921 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:109584191 (109.5 MB) TX bytes:71042844 (71.0 MB)

em2 Link encap:Ethernet HWaddr d8:9d:67:76:7e:19

 inet addr:10.0.0.1 Bcast:10.0.0.255 Mask:255.255.255.0

 inet6 addr: fe80::da9d:67ff:fe76:7e19/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:101 errors:0 dropped:0 overruns:0 frame:0

 TX packets:16298 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:9358 (9.3 KB) TX bytes:1466276 (1.4 MB)

em3 Link encap:Ethernet HWaddr d8:9d:67:76:7e:1a

 inet addr:10.0.1.1 Bcast:10.0.1.255 Mask:255.255.255.0

 inet6 addr: fe80::da9d:67ff:fe76:7e1a/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:127 errors:0 dropped:0 overruns:0 frame:0

 TX packets:117 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:11362 (11.3 KB) TX bytes:10598 (10.5 KB)

em4 Link encap:Ethernet HWaddr d8:9d:67:76:7e:1b

 inet addr:10.0.2.1 Bcast:10.0.2.255 Mask:255.255.255.0

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

p2p1 Link encap:Ethernet HWaddr 38:ea:a7:17:65:a0

 inet6 addr: fe80::3aea:a7ff:fe17:65a0/64 Scope:Link

 UP BROADCAST RUNNING PROMISC ALLMULTI MULTICAST MTU:2000 Metric:1

 RX packets:9 errors:0 dropped:0 overruns:0 frame:0

 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:810 (810.0 B) TX bytes:558 (558.0 B)

p2p2 Link encap:Ethernet HWaddr 38:ea:a7:17:65:84

 inet6 addr: fe80::3aea:a7ff:fe17:6584/64 Scope:Link

A VMX installation Guide www.junosandme.net – David Roy

50

 UP BROADCAST RUNNING PROMISC ALLMULTI MULTICAST MTU:2000 Metric:1

 RX packets:1 errors:0 dropped:1 overruns:0 frame:0

 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:301 (301.0 B) TX bytes:558 (558.0 B)

To retrieve more information regarding the Ethernet adapters you should use the lspci command. First

list all your Ethernet PCI devices like that:

jnpr@kvm:~# lspci | grep -i ethernet

02:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.2 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.3 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

06:00.0 Ethernet controller: Intel Corporation 82599 10 Gigabit Dual Port Backplane Connection

(rev 01)

06:00.1 Ethernet controller: Intel Corporation 82599 10 Gigabit Dual Port Backplane Connection

(rev 01)

The PCI addresses for the two 10GE ports are respectively 06:00.0 and 06:00.1. For more information

about a specific 10GE port you should use the following command with specifying a given PCI address:

jnpr@kvm:~# sudo lspci -vs 06:00.0

06:00.0 Ethernet controller: Intel Corporation 82599 10 Gigabit Dual Port Backplane

Connection (rev 01)

Subsystem: Hewlett-Packard Company Ethernet 10Gb 2-port 560M Adapter

Physical Slot: 2

Flags: bus master, fast devsel, latency 0, IRQ 136

Memory at eff00000 (32-bit, non-prefetchable) [size=1M]

I/O ports at 6000 [size=32]

Memory at efef0000 (32-bit, non-prefetchable) [size=16K]

[virtual] Expansion ROM at efc00000 [disabled] [size=512K]

Capabilities: [40] Power Management version 3

Capabilities: [50] MSI: Enable- Count=1/1 Maskable+ 64bit+

Capabilities: [70] MSI-X: Enable+ Count=64 Masked-

Capabilities: [a0] Express Endpoint, MSI 00

Capabilities: [e0] Vital Product Data

Capabilities: [100] Advanced Error Reporting

Capabilities: [140] Device Serial Number 00-00-00-ff-ff-00-00-00

Capabilities: [150] Alternative Routing-ID Interpretation (ARI)

Capabilities: [160] Single Root I/O Virtualization (SR-IOV)

Kernel driver in use: ixgbe

The last two lines provide some interesting information. Indeed, the module supports SR-IOV which allows

splitting a physical NIC in virtual NIC named Virtual Function (VF). It is interesting to note that by default

Virtual Function is disabled. This Intel model adapter currently supports up to 64 VF (aka. 64 virtual NICs)

numbered from 0 to 63.

Please note that currently the VMX orchestration script enables by default one VF (VF

number 0) per 10GE NIC. The script actually restarts the ixgbe driver by modifying the

max_vfs option. In other words the 10GE NIC bandwidth could not be shared between

several VMXs.

The last line shows which driver the 10GE port uses. This is, as expected, the ixgbe driver – the one

provided by Intel. As mentioned previously, at the time we are writing the book, the current Intel ixgbe

driver does not handle ingress multicast traffic. This limitation is for us a drawback because we wish to use

OSPF on our VMX. So in our case, we must use the ixgbe driver provided by Juniper.

The source code of the Juniper ixgbe driver can be found into the VMX installation package (vmx-15.1F4-

3/drivers/ixgbe-3.19.1/src/):

jnpr@kvm:~# cd /var/vRouters/junos/vmx-15.1F4-3/drivers/ixgbe-3.19.1/src/

You could check your current driver version by calling this command:

jnpr@kvm:~# sudo modinfo ixgbe | grep ver

A VMX installation Guide www.junosandme.net – David Roy

51

version: 4.0.1-k

srcversion: 44CBFE422F8BAD726E61653

vermagic: 3.19.0-25-generic SMP mod_unload modversions

The target version is 3.19.1. Here, you see that the Intel driver is not the right one. So let’s recompile the

Juniper ixgbe driver on your environment:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3/drivers/ixgbe-3.19.1/src# rm -f ixgbe.ko

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3/drivers/ixgbe-3.19.1/src# make install

make -C /lib/modules/3.13.0-32-generic/build SUBDIRS=/var/vRouters/junos/vmx-15.1F4-

3/drivers/ixgbe-3.19.1/src modules

make[1]: Entering directory `/usr/src/linux-headers-3.13.0-32-generic'

[...]

ixgbe.

Now, compare the compiled driver to the right folder:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3/drivers/ixgbe-3.19.1/src# cmp ixgbe.ko

/lib/modules/3.13.0-32-generic/kernel/drivers/net/ethernet/intel/ixgbe/ixgbe.ko

And finally stop and restart the ixgbe driver:

jnpr@kvm:~# sudo rmmod ixgbevf

jnpr@kvm:~# sudo rmmod ixgbe

jnpr@kvm:~# sudo modprobe ixgbe

You should encounter an error when stopping the ixgbevf driver: rmmod: ERROR:

Module ixgbevf is not currently loaded. This driver manages the

Virtual Function. As the VF is by default disabled, the ixgbevf might not be started.

Don’t take into account the error. For more information regarding the option of the ixgbe

driver you can read the README file saved here: drivers/ixgbe-3.19.1/

You can call back the modinfo command and check back if the driver currently running is the Juniper

modified version:

jnpr@kvm:~# sudo modinfo ixgbe | grep version

version: 3.19.1

srcversion: B97B1E7CF79A25F5E4D7B96

vermagic: 3.13.0-32-generic SMP mod_unload modversions

Understanding the VMX configuration file for SR-IOV

The server is ready to install the VMX with SR-IOV support. The deployment of an SR-IOV VMX is

simply performed by the orchestration script. There are few parameters in the vmx.conf file that differ from

the virtio mode. There is a sample config file available in the installation package:

config/samples/vmx.conf.sriov. We have extracted below the parts that are specific to the SR-IOV mode:

root@kvm:/var/vRouters/junos/vmx-15.1F4-3# more config/samples/vmx.conf.sriov

[…]

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 7

 console_port: 8602

 device-type : sriov

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

A VMX installation Guide www.junosandme.net – David Roy

52

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 port-speed-mbps : 10000

 nic : int1

 mtu : 2000 # DO NOT EDIT

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/0 connects to int1"

 - interface : ge-0/0/1

 port-speed-mbps : 10000

 nic : int2

 mtu : 2000 # DO NOT EDIT

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F2"

 description : "ge-0/0/0 connects to int2"

Let’s clarify each line flagged with a number:

 Line (1): For full performance mode you need to allocate at least 12GB of memory. Here we allocates

16GB for VFP.

 Line (2): The full performance mode requires 7 vCPU for VFP.

 Line (3): The device type is configured as sriov which forces all virtual interfaces of the VCP to be

attached to physical NIC via the PCI-Passthrough mechanism.

 Line (4): You must specify the port speed of the NIC. Currently only 10GE SR-IOV NIC are

supported.

 Line (5): Specify the NIC name referring to the physical interface name as displayed for example by

the ifconfig command.

 Line (6): The MTU is set to 2000 by default

 Line (7): This parameter refers to the VF directly attached to the virtual interface. Currently the

orchestration script creates one VF per physical NIC, therefore, VF is always 0.

Deploying a SR-IOV VMX instance via VMX Script

This new VMX router will be named vmx3 and built with two 10GE interfaces as shown by the next figure:

A VMX installation Guide www.junosandme.net – David Roy

53

Figure . VMX with PCI-Passthrough enabled

We create a new folder vmx3 and copy the vmx.conf.sriov template;

root@kvm:/var/vRouters# mkdir vmx3

root@kvm:/var/vRouters# cp junos/vmx-15.1F4-3/config/samples/vmx.conf.sriov vmx3/vmx-sriov.conf

We modify the configuration file as followed:

root@kvm:/var/vRouters/vmx3# more vmx-sriov.conf

vmx.conf

Config file for vmx on the hypervisor.

Uses YAML syntax.

Leave a space after ":" to specify the parameter value.

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx3 # Maximum 4 characters

 host-management-interface : em1

 routing-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/jinstall64-vmx-15.1F4.15-

domestic.img"

A VMX installation Guide www.junosandme.net – David Roy

54

 routing-engine-hdd : "/var/vRouters/junos/vmx-15.1F4-3/images/vmxhdd.img"

 forwarding-engine-image : "/var/vRouters/junos/vmx-15.1F4-3/images/vFPC-20151203.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 2048

 console_port: 30000

 interfaces :

 - type : static

 ipaddr : 192.168.1.3

 macaddr : "0A:00:DD:00:03:01"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 7

 console_port: 30001

 device-type : sriov

 interfaces :

 - type : static

 ipaddr : 192.168.1.24

 macaddr : "0A:00:DD:00:03:02"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 port-speed-mbps : 10000

 nic : p2p1

 mtu : 2000 # DO NOT EDIT

 virtual-function : 0

 mac-address : "02:06:0A:00:03:01"

 description : "ge-0/0/0 connects to p2p1"

 - interface : ge-0/0/1

 port-speed-mbps : 10000

 nic : p2p2

 mtu : 2000 # DO NOT EDIT

 virtual-function : 0

 mac-address : "02:06:0A:00:03:02"

 description : "ge-0/0/1 connects to p2p2"

Finally we use the orchestration script to install the vmx3 (note: the output has been truncated):

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo ./vmx.sh -lv --install --cfg ../../vmx3/ vmx-

sriov.conf

==

Date..03/13/16 18:19:49

VMX Identifier....................................vmx3

Config file......................................./var/vRouters/vmx3/vmx-sriov.conf

Build Directory.................................../var/vRouters/junos/vmx-15.1F4-3/build/vmx3

Environment file................................../var/vRouters/junos/vmx-15.1F4-

3/env/ubuntu_sriov.env

A VMX installation Guide www.junosandme.net – David Roy

55

Junos Device Type.................................sriov

Initialize scripts................................[OK]

Copy images to build directory....................[OK]

==

VMX Environment Setup Completed

==

[…]

Number of Intel 82599 NICs........................2

Configuring Intel 82599 Adapters for SRIOV........[OK]

Number of Virtual Functions created...............[OK]

[…]

==

48

VMX Status Verification Completed.

==

Log file../dev/null

==

Thankyou for using VMX

==

Sounds good! Let’s check with the virsh command the status of our VM:

jnpr@kvm:/var/vRouters/junos/vmx-15.1F4-3# sudo virsh list

 Id Name State

--

 2 vcp-vmx1 running

 3 vfp-vmx1 running

 5 vcp-vmx2 running

 6 vfp-vmx2 running

 5 vcp-vmx3 running

 6 vfp-vmx3 running

As shown, we have 3 VMX running. Two VMX run in virtio mode and the last one in sriov mode. In

sriov mode there is no need to use orchestration script to bind virtual interfaces to physical interfaces.

Remember in the vmx.conf file we have specified the link between the VFP virtual interfaces and the

physical NIC. You could call back the lspci command to see that the orchestration script has created one

Virtual Function per 10GE adapter. These VFs (VF 0) are directly attached to the ge-0/0/0 and ge-0/0/1

interfaces.

jnpr@kvm:~# lspci | grep -i ethernet

02:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.2 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

02:00.3 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)

06:00.0 Ethernet controller: Intel Corporation 82599 10 Gigabit Dual Port Backplane Connection

(rev 01)

06:00.1 Ethernet controller: Intel Corporation 82599 10 Gigabit Dual Port Backplane Connection

(rev 01)

06:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)

06:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)

Now your vmx3 will be fully operational after you put the initial configuration via the console port of the

VCP, as we did for low-bandwidth applications use case.

Summary of installation procedures

We covered the three typical use cases of VMX. As seen the choice of which Hypervisor depends on your

target use case. VMware ESXi is really simple and easy to use for deploying VMX for Lab simulation

purposes. KVM is currently the host OS on which you can do the most of tunings and on which you can

already set up a VMX supporting several 10Gbps of traffic. The support of Direct I/O on ESXi is in the

roadmap and should be available in the coming next releases. The VMX is still at the beginning of the

virtual routers era. Many improvements regarding the performance of the VMX as well as the installation

procedures should be available soon.

