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Abstract

To demonstrate that matrices of seesaw type lead to a hieararchy in
the neutrino masses, i.e. that there is a large gap in the singular spectrum
of these matrices, one generally uses an approximate block-diagonalization
procedure. In this note we show that no approximation is required to prove
this gap property if the Courant-Fisher-Weyl theorem is used instead.
We do not claim originality for this observation which however does not
seem to show up in the literature. We also sketch the proof of additional
inequalities for the singular values of matrices of seesaw type.

1 Introduction

The terms in the Standard Model Lagrangian1 giving mass to the neutrinos can
be gathered in a matrix of the general form (see for instance [3])

Mν =
(

mL
tmD

mD MR

)
(1)

which has to be symmetric and where each entry is a complex 3× 3 matrix
acting on the generation (or flavor) space. The requirement of renormalizabil-
ity gives the further contraint that mL = 0. Note that the Noncommutative
Geometry approach to the Standard Model naturally predicts a matrix of this
type with mL = 0 without any consideration of renormalizability ([1], [2]).

The neutrino masses are the singular values of Mν , that is to say the eigen-
values of the positive definite matrix

√
M∗
νMν , where the star means matrix

adjoint.
To explain the smallness of the observed neutrino masses it is generally

argued that if mD is small with respect to MR, then the singular values of Mν

split into two families: one very small, and one large (of the order of MR). This
is the seesaw mechanism. It is easy to show explicitly for one generation, since
in that case Mν is a 2 × 2 matrix. It is then found that the smallest singular
value m1

ν of Mν satisfies

1extended with right-handed neutrinos
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m1
ν

mR
≈
(

mD

mR

)2

(2)

at second order in mD

mR
while the largest singular value m2

ν is approximately
equal to mR. With just a little more work one finds in fact that (with mD and
mR real)

m1
ν

mR
≤

(
mD

mR

)2

m2
ν

mR
> 1 (3)

We call this “the gap property”. For three generations though, Mν cannot
be diagonalized by an analytical formula and one appeals to an approximate
block diagonalization (see for instance [5] or the appendix of [4]), that is to
say that Mν is brought to block-diagonal form thanks to approximately unitary
matrices. One can then prove the gap property up to higher order terms.

Our purpose here is just to make the simple observation that if one uses the
Courant-Fischer-Weyl theorem then no approximation is needed to prove the
gap property for the singular values for an arbitrary number of generations, in
the form of exact inequalities like (3).

More precisely, let Mν be the symmetric complex 2n× 2n matrix

Mν =
(

0 tmD

mD MR

)
(4)

where n is the number of generations. Let m1
ν , . . . ,m

2n
ν be the singular

values of Mν written in ascending order. (Hence if n = 3, m1
ν ≤ m2

ν ≤ m3
ν are

the masses of the 3 light neutrinos at tree level, and m4
ν ≤ m5

ν ≤ m6
ν are the

masses of the 3 heavy ones.) Let m1
D ≤ . . . ≤ mn

D be the singular values of mD

(Dirac masses) and m1
R ≤ . . . ≤ mn

R be the singular values of mR (Majorana
masses). We further suppose that mD is not singular (hence m1

D > 0) and that
mn
D < m1

R. Then we will show that

mn
ν ≤ (mn

D)2√
(mn

D)2 + (m1
R)2

mn+1
ν ≥

√
(m1

R)2 + (m1
D)2 (5)

which immediately entails

m1
ν ≤ . . . ≤ mn

ν <
(mn

D)2

m1
R

< m1
R < mn+1

ν ≤ . . . ≤ m2n
ν (6)

which directly generalizes (3) to n generations.
It is our hope that these exact formulas can be of some use to physicists.

Here are some motivations for this hope:
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1. In the usual approximate method one reasons on the order of magnitude
of the entries of the matrices mD and mR. However a matrix with large
entries can have very small (even vanishing) singular values. The method
exposed here could be used to see what are the most general relations to
be expected among the singular values without getting our hands dirty by
delving into the algebraic relations satisfied by the matrices.

2. This method is also fairly general (in particular it does not depend on any
ansatz as the approximate block-diagonalization does). It might be useful
in other contexts where the ratio of the entries of mD on those of mR,
though smaller than one, is not so small as to completely neglect all the
multiplicative constants introduced in every step of the approximation.

The paper is organized as follows: in section 2 we recall the necessary mathe-
matical background keeping it to the minimum required to prove the gap prop-
erty in section 3. In section 4 we sketch the proof of additional inequalities
for the singular values thanks to immediate generalizations of the formulas in
section 2.

2 Min-max theorem and matrix inequalities

We recall here the following theorem.

Theorem 1 (Courant-Fischer-Weyl min-max theorem) Let M be a self-adoint
N ×N matrix with eigenvalues m1 ≤ . . . ≤ mN . Then:

mk = min
W

(max{〈MX, X〉|X ∈W, ‖X‖ = 1})

where W runs over all vector subspaces of CN of dimension k, and

mk = max
W

(min{〈MX, X〉|X ∈W, ‖X‖ = 1})

where W runs over all vector subspaces of CN of dimension N − k + 1.

This yields the following well-known corollary that we will need. For a self-
adjoint matrix M let us write min(M) for the smallest eigenvalue of M .

Corollary 1 Let A, B be two self-adjoint N ×N matrices. Then

min(A + B) ≥ min(A) + min(B)

Thanks to the min-max theorem one can also easily show the following inter-
lacing property (called the Cauchy interlacing theorem): let Q be a submatrix
of M obtained by orthogonal projection on a vector subspace generated by n
basis vectors. Let q1 ≤ . . . ≤ qn be the eigenvalues of Q. Then

mk ≤ qk ≤ mN−n+k (7)
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for every k ≤ n. In the main part of this paper we will only need the special
case where N = 2n and k = 1, yielding

min(Q) ≤ mn+1 (8)

We will also need the following lemma:

Lemma 1 For any A ≥ 0 and any B ∈Mn(C) one has

min(B∗AB) ≥ min(A) min(B∗B)

We prove the lemma. It is obvious when B is singular. We then suppose
that it is not. Let X be a unit vector. We have:

〈B∗ABX, X〉 = 〈ABX, BX〉

= 〈A BX

‖BX‖
,

BX

‖BX‖
〉‖BX‖2

≥ min(A)‖BX‖2, by the min-max theorem (9)

Now ‖BX‖2 = 〈B∗BX, X〉 ≥ min(B∗B) also by the min-max theorem.
Since min(A) ≥ 0 one gets 〈B∗ABX, X〉 ≥ min(A) min(B∗B), frow which the
results follows using the min-max theorem again.

3 Singular value estimates for matrices of see-
saw type

From (4) we compute

MνM
∗
ν =

(
? ?
? mDmD

∗ + MRM∗
R

)
(10)

where the question marks stand for matrices we do not care about. We call
Q = mDmD

∗ + MRM∗
R. From (8) we get:

min(Q) ≤ mn+1 (11)

where mn+1 = (mn+1
ν )2. But min(Q) ≥ min(MRM∗

R) + min(mDmD
∗) =

(m1
R)2 + (m1

D)2 which yields the second part of (5).
To prove the first part we first need to write down the inverse of Mν . There

exists a general formula for inverting 2 × 2 block matrices. Here we can check
by direct computation that

M−1
ν =

(
−m−1

D MR
tm−1

D m−1
D

tm−1
D 0

)
(12)

We then see that (M∗
νMν)−1 =

(
X ?
? ?

)
, where
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X = m−1
D MR

tm−1
D ( tm−1

D )∗M∗
R(m−1

D )∗ + (m∗
DmD)−1 (13)

Using (8) again we obtain

min(X) ≤ mn+1

where this time mn+1 is n + 1-th largest eigenvalue of (M∗
νMν)−1, that is to

say mn+1 = (mn
ν )−2. Hence

min(m−1
D MR

tm−1
D ( tm−1

D )∗M∗
R(m−1

D )∗) + min((m∗
DmD)−1) ≤ 1

(mn
ν )2

Now using the lemma twice we obtain

min(m−1
D MR

tm−1
D ( tm−1

D )∗M∗
R(m−1

D )∗) ≥ min(MR
tm−1

D ( tm−1
D )∗M∗

R) min(m−1
D (m−1

D )∗)
≥ min( t(mDm∗

D)−1) min(MRM∗
R) min((m∗

DmD)−1)
≥ min((mDm∗

D)−1) min(MRM∗
R) min((m∗

DmD)−1)

≥ (m1
R)2

(mn
D)4

(14)

We thus have
(m1

R)2

(mn
D)4

+
1

(mn
D)2
≤ 1

(mn
ν )2

which easily yields the first part of (5).

4 Additional inequalities

We now sketch the proof of the following inequalities:

mn+k
ν ≥

√
(m1

D)2 + (mk
R)2 (15)

for k = 1, . . . , n and

mj
ν ≤

mn
Dmj

D√
(mj

D)2 + (m1
R)2

(16)

for j = 1, . . . , n.
For this we will need to strengthen corollary 1 and lemma 1. The first

strengthening is given by Weyl’s inequalities: if A and B are hermitian n × n
matrices, and C = A + B, then for 1 ≤ k ≤ n one has

ak + b1 ≤ ck ≤ ak + bn (17)

where c1 ≤ . . . ≤ ck, a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn are the eigenvalues of
A, B and C.

As for lemma 1, we can extend it in the following way.
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Lemma 2 For any A ≥ 0, B ∈ Mn(C) let C = B∗AB. Then one has (with
the same notations as above)

ck ≥ ak min(B∗B)

The proof of this lemma follows the same line as the one of lemma 1. Suppose
B is non singular and let W be a subspace of Cn of dimension k. Then BW
has dimension k and must intersect the orthogonal of the subspace generated by
the k− 1 eigenvector of A corresponding to a1, . . . , ak−1. Hence 〈ABX, BX〉 ≥
ak‖BX‖2 on W . The result follows from the minmax theorem.

The inequalities (15) and (16) can then be proven by the same techniques
as in the previous section.
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