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In this paper, we focus on the Janus symplectic group. We explore its various symmetries
and its action on the elements of the dual of its Lie algebra, called torsors. Special atten-
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1. Introduction

The application of the coadjoint action of a symplectic group on the dual of its

Lie algebra, initiated by the mathematician Jean-Marie Souriau, has shed light on

specific aspects of the approach followed by physics. The orbit method is due to

Kirillov ([4–7, 12, 13, 15, 21, 24, 25]).

Thus, the restricted Lorentz symplectic group, limited to its two orthochrone

components, translates, through the invariance properties that result from it, the

aspects of special relativity. In 1970, Souriau established that the analysis of the

components of its moment makes it possible to shed light on the geometric nature
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of a spin (not quantized): see [19, 20]. He uses for this purpose symplectic methods

([8, 10, 22, 23]). In the theory of symplectic groups, we show a classification in

terms of movements.

By operating the product of this group by that of the spatio-temporal trans-

lations, we obtain the restricted Poincaré symplectic group, always limited to its

two orthochrone components. In its moment, we first find the energy related to

the subgroup of temporal translations. Then the momentum, linked to the spatial

translations, the two being linked by the invariance of the modulus of the energy-

momentum four-vector under the action of the Lorentz group.

By adding a translation along a fifth dimension to the restricted Poincaré group,

we form a Lie group to which we will give the name Restricted Kaluza Group

([1–3, 11, 14]). This group is not the 15-dimensional Kaluza group associated with

a 5-dimensional Lorentzian manifold but a new 11-dimensional group, including

5-dimensional space-time translation. This new dimension endows the momentum

with an additional scalar that can be identified with the electric charge q, which

may be positive, negative, or zero, and is still not quantized. We then bring out

the geometric translation according to a scalar φ due to endowing the masses with

an invariant electric charge. Then, by bringing in a new symmetry reflecting the

inversion of the fifth dimension, synonymous with an inversion of the scalar from q

to −q, we double the number of its connected components from 2 to 4. The action

on the moment then links this new symmetry to the inversion of the electric charge

q. We thus deduce the geometric modeling of charge conjugation or C-Symmetry.a

It’s then logical to name this new extension, the Restricted Janus Group.

By introducing a new symmetry to the previous group, which we describe

as T-Symmetry,b we build the Janus Symplectic Group. Thus, we double the

number of connected components from four to eight, grouped into two subsets:

“Orthochronous”, conserving time and energy properties, and “Antichronous”,

reversing time and energy. Therefore, we bring forth the geometric translation

of endowing masses with an invariant electric charge. As the Jean-Marie Souriau

demonstrated as early as 1970, a pioneer in the theory of symplectic groups

([9, 19, 20]), this approach has allowed key elements, which have marked the

progress of relativistic physics, to be given a purely geometric nature.

In relation to the world of physics, wouldn’t the role of mathematics be to illumi-

nate the path traveled? Conversely, could it be possible that the exploration of new

symmetries, accompanying this decoding using symplectic groups, contains more

than what we thought we put into it? That it could designate new paths to follow?

This is what we will consider with the Janus Symplectic Group with charge sym-

metry, by integrating the antichronous components of the Lorentz group, resulting

awhich translates the matter–antimatter symmetry introduced by Dirac.
bwhich converts matter into antimatter with negative mass, a concept we could name antimatter

in the Feynman sense.
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from its simple axiomatic definition, with the obvious repercussions on the Poincaré

group and its extensions.

2. Janus Symplectic Group

Let T̃ := I1,3, P̃ := −T̃ and

∀λ, ν ∈ {0, 1}, Lor(P̃ν
T̃
λ
) := {LnP̃

ν
T̃
λ
, Ln ∈ Lorn}.

Then, there are four connected components of Lor, given byc

Lorn = Lor(P̃0
T̃

0
), Lors = Lor(P̃1

T̃
0
),

Lort = Lor(P̃0
T̃

1
), Lorst = Lor(P̃1

T̃
1
)

and we have the decomposition

Lor =
⊔

ν,λ∈{0,1}

Lor(P̃ν
T̃
λ
). (1)

Then, we define the Janus symplectic group.

Definition 2.1. The Janus symplectic group is defined as the subgroup of GL(6,R):

J an :=



L 0 D

0 (−1)η φ

0 0 1

, η ∈ {0, 1} ∧ φ ∈ R ∧ L ∈ Lor ∧ D ∈ R4

.
The Janus symplectic group is therefore a subgroup of the group of isometries

in dimension 5 given byd:

Aff(O(1, 4)) :=

{(
L D′

0 1

)
, L ∈ O(1, 4) ∧ D′ ∈ R5

}
with τ1,4(L) := I1,4L

T I1,4 and O(1, 4) := {L ∈ GL(5,R), τ1,4(L)L = I5}. The

elements of Aff(O(1, 4)) are the elements which preserve the distance between two

events (pentavectors) X := (t, x, y, z, ξ) and X ′ := (t′, x′, y′, z′, ξ′) given by

d(X,X ′) := c2(t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2 − (ξ − ξ′)2.

cEqualities are shown by double inclusion. For example, let’s demonstrate that Lors = Lor(P̃1
T̃

0
).

Take L ∈ Lors (det(L) = −1 et [L]00 ≥ 1). Then we have det(LP̃) = −1 and [LP̃]00 ≥ 1 i.e.

we have Ln := LP̃ ∈ Lorn. Since P̃
−1

= P̃, we can conclude that L = LnP̃ ∈ Lor(P̃
1
T̃

0
). The

inclusion in the other direction is trivial.
dAff(O(1, 4)) is the affine group associated with O(1, 4), it is also defined by the semi-direct
product Aff(O(1, 4)) := O(1, 4)nR5. We can also define the symplectic Janus group as being the
affine group associated with the subgroup of O(1, 4) given by

Elec :=

{(
L 0

0 (−1)η

)
, η ∈ {0, 1} ∧ L ∈ Lor

}
called the symplectic electric group and we have J an := Aff(Elec).
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This fifth dimension is of space type (we note the variable ξ). Each dimension is

therefore associated with a symmetry, there are three types of symmetries:

• the T-symmetry ;

• the Px-symmetry, Py-symmetry, Pz-symmetry grouped together what we call

the P-symmetry ;

• the ξ-symmetry corresponding to the C-symmetry (the charge conjugation).

This space of dimension 5 is a Minkowski metric space to which we have added one

dimension, it has the metric I1,4.

We also define the restricted Janus group is the subgroup of J an given by

J ann :=



Ln 0 D

0 1 φ

0 0 1

, φ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

.
Let

C :=


I4 0 0

0 −1 0

0 0 1

, P :=

(
P̃ 0

0 I2

)
, T :=

(
T̃ 0

0 I2

)
.

We have

∀λ, η, ν ∈ {0, 1},


Ln 0 D

0 1 φ

0 0 1

CηPνTλ =


LnP̃

ν
T̃
λ

0 D

0 (−1)η φ

0 0 1


and therefore by Eq. (1):

J an =



LnP̃

ν
T̃
λ

0 D

0 (−1)η φ

0 0 1

, λ, η, ν ∈ {0, 1} ∧ φ ∈ R

∧ Ln ∈ Lorn ∧ D ∈ R4

.
Definition 2.2. (i) The CPT-group is the subgroup K of J an of order 8 generated

by C, P and T, i.e.

K := {CηPνTλ, η, ν, λ ∈ {0, 1}} = {I6,T,P,PT,C,CT,CP,CPT}.

(ii) For all X ∈ K, the X-component of J an is

J an(X) := {JX, J ∈ J ann}.
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Thus, we have

J an(CηPνTλ) =


LnP̃

ν
T̃
λ

0 D

0 (−1)η φ

0 0 1

, φ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

.
These eight components are the eight connected components of J an, we have the

decomposition:

J an =
⊔

X∈K

J an(X) =
⊔

η,ν,λ∈{0,1}

J an(CηPνTλ).

The group Lor is the Lie group of dimension 6 and its Lie algebra is

lor := A(1, 3) := {Λ ∈M(4,R), τ1,3(Λ) = −Λ}.

Then, the group J an is a Lie group of dimension 11 and its Lie algebra is

jan =


Λ 0 Γ

0 0 ε

0 0 0

,Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R

.
We have two characterizationse:(

R5
)∗

=

{(
Γ

ε

)
7→ −(PT q)I1,4

(
Γ

ε

)
= −τ(P )Γ− qε,

(
P

q

)
∈ R5

}
,

A(1, 3)∗ =

{
Λ 7→ −1

2
Tr(MΛ), M ∈ A(1, 3)

}
.

Then, we havef

jan∗ =

{M |P | q} :

Λ 0 Γ

0 0 ε

0 0 0

 7→ −1

2
Tr(MΛ)− τ(P )Γ− qε, M ∈ A(1, 3)

∧ P ∈ R4 ∧ q ∈ R

.
The action of the group J an on jan∗ is defined by the coadjoint representation

i.e. for any a ∈ J an and any µ ∈ jan∗, we denote this action by

a • µ := Ad∗a(µ).

with

Ad∗ : J an → Aut(jan∗)

a 7→ Ad∗a : µ 7→ (Z 7→ µ(a−1Za)).

eFor all β ∈ R∗, the application Φβ which to M ∈ A(1, 3) associates the linear form Λ 7→
βTr(MΛ) is an isomorphism ofA(1, 3) toA(1, 3)∗. Taking {Akl := −Ekl+[I1,3]ll[I1,3]kkElk, k, l ∈
{1, . . . , 4}, k < l} the canonical basis of A(1, 3), we have Φ−1/2(Akl)(Akl) = 1, hence the choice

of β := −1/2.
fThe elements of jan∗ are called torsors.
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Proposition 2.1. Let

a :=

L 0 D

0 (−1)η φ

0 0 1

 ∈ J an, {M |P | q} ∈ jan∗.

We have

a • {M |P | q} = {LMτ(L) +Dτ(P )τ(L)− LPτ(D) |LP | (−1)ηq}.

Proof. We have

(a • {M |P | q})

Λ 0 Γ

0 0 ε

0 0 0



= {M |P | q}

a−1
Λ 0 Γ

0 0 ε

0 0 0

 a



= {M |P | q}


τ(L) 0 −τ(L)D

0 (−1)η (−1)η+1φ

0 0 1


Λ 0 Γ

0 0 ε

0 0 0


L 0 D

0 (−1)η φ

0 0 1




= {M |P | q}

τ(L)ΛL 0 τ(L)(ΛD + Γ)

0 0 (−1)ηε

0 0 0


= −1

2
Tr(Mτ(L)ΛL)− τ(P )τ(L)(ΛD + Γ)− (−1)ηqε

= −1

2
Tr[(LMτ(L) + 2Dτ(P )τ(L))Λ]− τ(LP )Γ− (−1)ηqε

= −1

2
Tr[(LMτ(L) +Dτ(P )τ(L)− LPτ(D))Λ]− τ(LP )Γ− (−1)ηqε

= {LMτ(L) +Dτ(P )τ(L)− LPτ(D) |LP | (−1)ηq}

Λ 0 Γ

0 0 ε

0 0 0

.
To describe the Lie algebra of J an, we can also use the isomorphism of Lie

algebrasg:

j : (R3,∧)→ (A(3), [ , ])xy
z

 7→
 0 −z y

z 0 −x
−y x 0

.
gWe have for all u, v ∈ R3: u ∧ v = j(u)(v) and j(u ∧ v) = [j(u), j(v)] = j(u)j(v)− j(v)j(u).
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with ∧ the cross product on R3 and A(3) the vector space of antisymmetric matrices

of size 3. Then, we have

jan =




Λ 0 Γ

0 0 ε

0 0 0

, Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R



=




0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

, β, w, γ ∈ R3 ∧ v, ε ∈ R

.
Therefore, for all {M |P | q} ∈ jan∗, there are unique `, g, p ∈ R3 and E, q ∈ R
such as

{M |P | q}


Λ 0 Γ

0 0 ε

0 0 0

 =

{(
0 gT

g j(`)

) (
E

p

)
q

}
0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0


= −1

2
Tr

((
0 gT

g j(`)

)(
0 βT

β j(w)

))
− (E pT )I1,3

(
v

γ

)
− qε

= `Tw − gTβ + pT γ − Ev − qε.

We denote this last equality as

{` | g | p |E | q}


0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

.
The dual jan∗ has the following descriptions:{` | g | p |E | q} :


0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 7→ `Tw − gTβ + pT γ − Ev − qε,

`, g, p ∈ R3 ∧ E, q ∈ R

.
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Definition 2.3. Let

µ := {M |P | q} := {l | g | p |E | q} ∈ jan∗

with relations

M =

(
0 gT

g j(`)

)
, P =

(
E

p

)
.

(i) The matrix M := M(µ) ∈ A(1, 3) is called the moment matrix associated with

µ. The vector ` := `(µ) ∈ R3 is called the angular momentum of M , and the

vector g := g(µ) ∈ R3 is the relativist barycenter of M .

(ii) (a) The vector P := P (µ) ∈ R4 is called the stress-energy vector associated

with µ. The vector p := p(µ) ∈ R3 is called the linear momentum of P ,

and the scalar E := E(µ) ∈ R is called the energy of P .

(b) The first Casimir number associated with µ is defined by

C1 := C1(µ) := PT I1,3P = E2 − p2.

(c) The mass associated to µ is defined by

m := m(µ) := sign(E)
√
C1 = sign(E)

√
E2 − p2.

(iii) The scalar q := q(µ) ∈ R is called the electric charge associated with µ.

We deduce a simple expression of the action of the CPT-group K on the torsors

of jan∗.

Corollary 2.2. Let {l | g | p |E | q} ∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have

(CηPνTλ) • {l | g | p |E | q} = {l | (−1)λ+νg | (−1)νp | (−1)λE | (−1)ηq}.

Proof. We apply Proposition 2.1 with a := CηPνTλ:

(CηPνTλ) • {l | g | p |E | q}

= (CηPνTλ) •

{(
0 gT

g j(`)

) (
E

p

)
q

}

=

{
P̃
ν
T̃
λ

(
0 gT

g j(`)

)
T̃
λ
P̃
ν
I1,3T̃

λ
P̃
ν
I1,3

(
E

p

)
(−1)ηq

}

=

{(
0 (−1)λ+νgT

(−1)λ+νg j(`)

) (
(−1)λE

(−1)νp

)
(−1)ηq

}
= {l | (−1)λ+νg | (−1)νp | (−1)λE | (−1)ηq}.

So we have

C • {l | g | p |E | q} = {l | g | p |E | − q},

2450054-8
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P • {l | g | p |E | q} = {l | −g | −p |E | q},

T • {l | g | p |E | q} = {l | −g | p | −E | q}.

Corollary 2.3. Let µ ∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have

P ((CηPνTλ) • µ) = P̃νT̃λP (µ),

C1((CηPνTλ) • µ) = C1(µ),

m((CηPνTλ) • µ) = (−1)λm(µ).

Proof. Let µ := {l | g | p |E | q} ∈ jan∗. We have for the stress-energy tensor

P (P • µ) = P ({l | −g | −p |E | q}) =

(
E

−p

)
= P̃P (µ),

Fig. 1. This table lists the eight values of µ′ := (CηPνTλ)•{l | g | p |E | q} for all λ, η, ν ∈ {0, 1}.
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P (T • µ) = P ({l | −g | p | −E | q}) =

(
−E
p

)
= T̃P (µ),

P (P • µ) = P ({l | g | p |E | −q}) =

(
E

p

)
= P (µ)

for the first Casimir number:

C1((CηPνTλ) • µ) = P (µ)T T̃
λ
P̃
ν
I1,3P̃

ν
P̃
λ
P (µ) = P (µ)T I1,3P (µ) = C1(µ)

for the mass:

m((CηPνTλ) • µ) = sign(E((CηPνTλ) • µ))

√
C1((CηPνTλ) • µ)

= sign((−1)λE)
√
C1(µ) = (−1)λm(µ).

Therefore the elements variable by these actions are

P (P • µ) = P̃P (µ), P (T • µ) = T̃P (µ), m(T • µ) = −m(µ) (2)

and we have the above table in Fig. 1.

3. Discussion and Conclusion

In this paper, we have performed a double extension of the restricted Poincaré group

limited to its orthochronous components, which are classically used in physics. This

extension also includes the transition from the four-dimensional Minkowski space-

time to a new space of the same dimension, to which we have added a translation

along an additional fifth dimension to form a new Lie group. The existence of this

additional subgroup results in the invariance of a scalar, identified as the electric

charge. A symmetry is introduced along this fifth dimension, and we have shown

that this leads to the inversion of the electric charge. This provides a geometric

representation of the symmetry between matter and antimatter.

In 1905, Albert Einstein revolutionized physics by introducing the theory of

special relativity, integrating time, via the constant c, as a coordinate comparable

to spatial dimensions in the geometry of Minkowski space. Ten years later, with his

field equation, he explained phenomena such as the precession of Mercury’s perihe-

lion and the deflection of light, while laying the foundations of modern cosmology.

The Big Bang theory, supported by Edwin Hubble’s observations and Friedmann’s

work, revealed that the early universe was characterized by extreme density and

temperature conditions.

Simultaneously, quantum mechanics emerged with the discovery of antimatter

by Paul Dirac, an essential postulate in the cosmological model where, a fraction of

a second after the Big Bang, matter and antimatter coexisted in equilibrium with

gamma photons. However, the progressive disappearance of antimatter, implied

by annihilations, remains a mystery, reinforced by the discovery of the cosmic

microwave background in 1965.
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The paradox of baryonic asymmetry found a theoretical response in 1967 with

Sakharov, who postulated the existence of a twin universe symmetric to ours accord-

ing to CPT symmetry, containing antimatter and evolving with an opposite arrow

of time [16–18]. This model is based on a natural extension of fundamental sym-

metries, although the complete separation of the two universes leaves unresolved

questions.

Within the framework of a geometric approach via dynamical groups, and build-

ing on the theory of symplectic groups by Souriau [20], we consider here an extension

of Sakharov’s model, the Janus model. The latter proposes an alternative vision

where the two universes, far from being disjoint, are connected by a covering struc-

ture. This configuration allows gravitational interaction between particles of oppo-

site masses, thereby redefining CPT symmetry in a larger geometric framework,

including the antichronous components of the Poincaré group.

In conclusion, this approach not only sheds light on the path physics has taken

but also suggests new avenues, offering a possible resolution to contemporary crises

in cosmology, as evidenced by the data from the Hubble and James Webb tele-

scopes. A more detailed study will be presented, including a system of coupled field

equations modeling the gravitational interactions induced by these new symmetries.
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[19] J. M. Souriau, Géométrie et relativité (Hermann, 1964).
[20] J. M. Souriau, Structure of Dynamical Systems, a Symplectic View of Physics
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