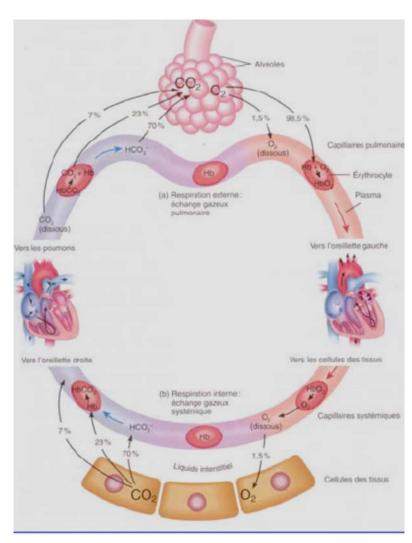
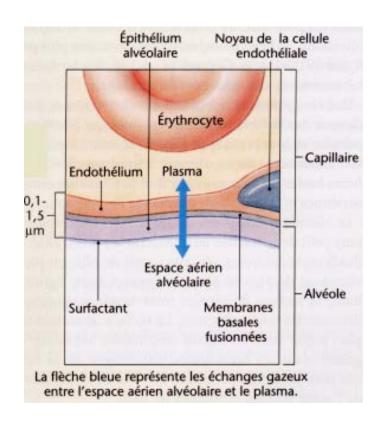

ECHANGES GAZEUX ET TRANSPORT DES GAZ

Physiologie respiratoire IFMK. Septembre 2012 Dr. M. VIPREY

DEFINITIONS


4 étapes :

- Ventilation pulmonaire : mouvements d'air entre l'atmosphère et l'alvéole (Convection)
 - Mécanique ventilatoire
 - Ventilation alvéolaire
- Diffusion : passage des gaz de l'alvéole au capillaire pulmonaire (Diffusion)
- Circulation sanguine : transport des gaz des capillaires pulmonaires aux capillaires tissulaires (Convection)
- Diffusion : échanges des gaz entre le capillaire tissulaire et la cellule (Diffusion)



- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
- Transport des gaz :
 - Hémoglobine
 - Transport sanguin de l'O₂
 - Saturation de l'Hb en O₂ et quantité d'O₂ combinée
 - Affinité de l'Hb pour l' O₂
 - Transport sanguin du CO₂
- Interactions O₂ / CO₂

MEMBRANE ALVEOLO-CAPILLAIRE

- Diffusion de l'O₂ de l'alvéole au capillaire pulmonaire
- Diffusion du CO₂ du capillaire pulmonaire à l'alvéole
- 2 étapes :
 - Diffusion à travers la membrane alvéolo-capillaire (MAC)
 - Diffusion et fixation dans le sang capillaire
 - Plasma
 - Hématies

MEMBRANE ALVEOLO-CAPILLAIRE

Alvéole

Surfactant

Film liquidien

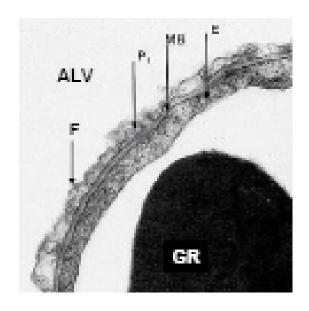
Épithélium alvéolaire : Pneumocytes I et II

Membrane basale alvéolaire

Interstitium

Membrane basale capillaire

Cellule endothéliale


Capillaire

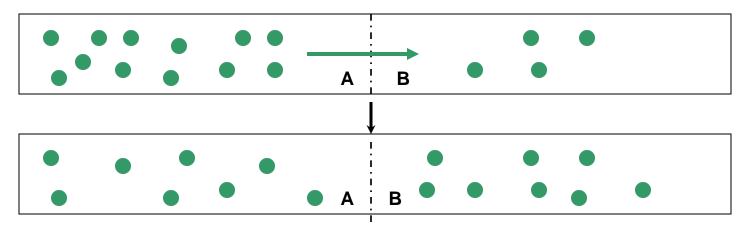
• 0,2 à 1 µm

• 60 - 80 m²

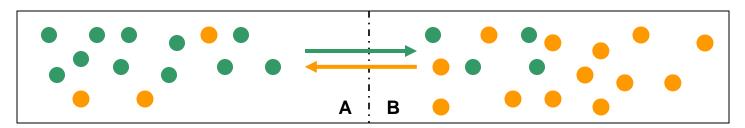
• Pathologie: fibrose pulmonaire

fusionnés

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂


Transport des gaz :

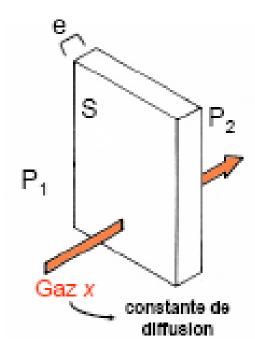
- Hémoglobine
- Transport sanguin de l'O₂
- Saturation de l'Hb en O₂ et quantité d'O₂ combinée
- Affinité de l'Hb pour l' O₂
- Transport sanguin du CO₂
- Interactions O₂ / CO₂


PRINCIPES PHYSIQUES

Un gaz diffuse toujours de la zone de pression partielle la plus élevée vers la zone de pression partielle la plus basse, jusqu'à obtention de l'équilibre.

Dans un mélange gazeux, chaque gaz se comporte de façon indépendante

PRINCIPES PHYSIQUES

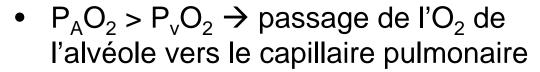

Loi de Fick :

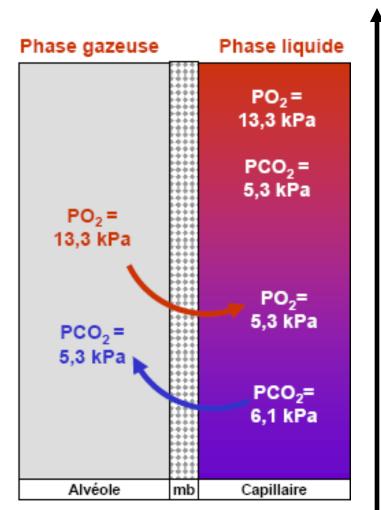
La quantité de gaz V_x diffusant à travers la MAC dépend de :

- Différence de pression : $\Delta P = P_2 P_1$
- Temps de contact: dt
- Constante de diffusion du gaz : D_x
- Surface d'échange : S
- Épaisseur du tissu (inverse) : e

$$V_X = (P_2 - P_1).(D_x.S / e). dt$$

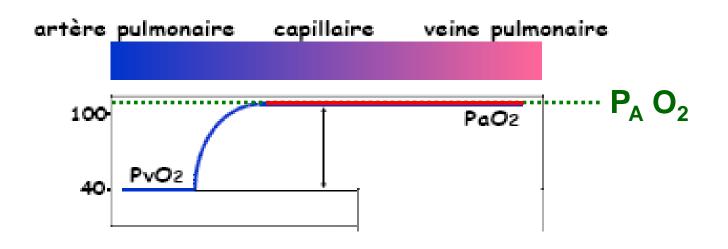
 $V_X = \Delta P. DL_x$


avec $DL_x = D_x.S$ / e : coefficient de diffusion du gaz x

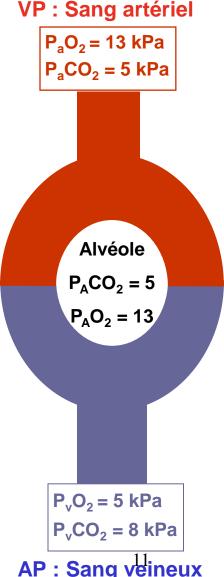

Diffusion alvéolo-capillaire

VP : Sang artériel

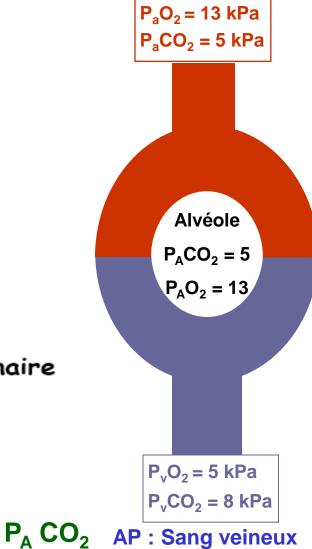
Une artère pulmonaire contient du sang veineux (P_vO₂ basse)
 Une veine pulmonaire contient du sang artériel (P_aO₂ élevée)


 P_ACO₂ < P_vCO₂ → passage du CO₂ du capillaire pulmonaire à l'alvéole

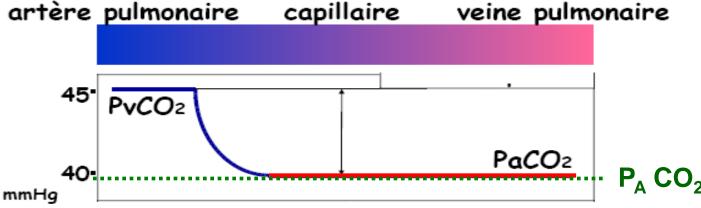
AP: Sang⁹veineux


- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
- Transport des gaz :
 - Hémoglobine
 - Transport sanguin de l'O₂
 - Saturation de l'Hb en O₂ et quantité d'O₂ combinée
 - Affinité de l'Hb pour l' O₂
 - Transport sanguin du CO₂
- Interactions O₂ / CO₂

DIFFUSION DE L'O₂

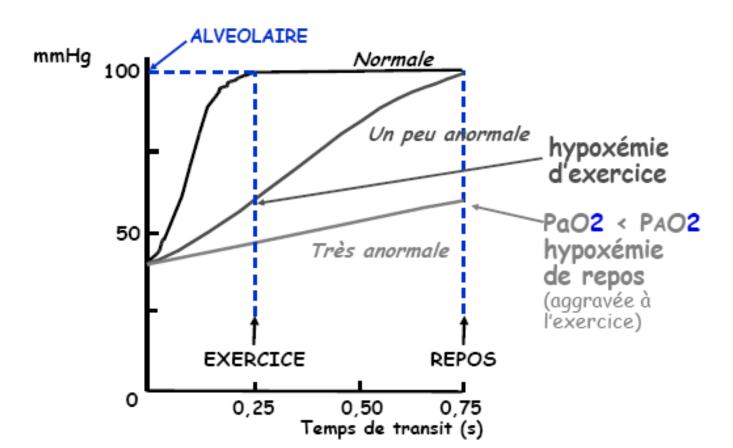

$$- V O_2 = DL_{O_2} \cdot (P_A O_2 - P_V O_2)$$

- $-P_AO_2 >> P_vO_2$ donc ΔP : élevée
- Capacité de diffusion DL _{O2} basse
- Diffusion de l' O_2 jusqu'à l'équilibre, soit P_A $O_2 = P_a O_2$



DIFFUSION DU CO₂

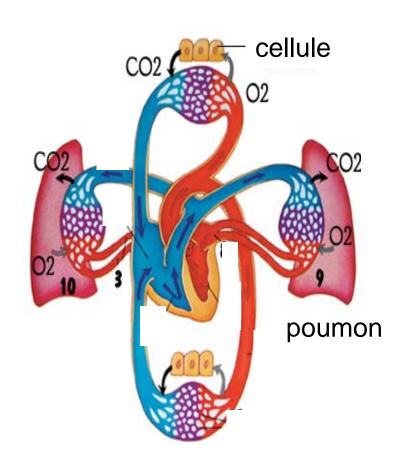
- $V_{CO_2} = DL_{CO_2} \cdot (P_A CO_2 P_V CO_2)$
- $-P_ACO2 > P_VCO_2.\Delta P$: basse
- Capacité de diffusion DL $_{CO_2}$ élevée $(DL_{CO_2} = 20 \times DL_{O_2})$
- Diffusion du CO_2 jusqu'à l'équilibre, soit $P_A CO_2 = P_a CO_2$



VP : Sang artériel

Diffusion alvéolo-capillaire

- $V_X = (D.S / e) (P_2 P_1) .dt$
- Au repos : dt = 0.75 s
- Exercice : dt = 0.25 s



- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
- Transport des gaz :
 - Hémoglobine
 - Transport sanguin de l'O₂
 - Saturation de l'Hb en O₂ et quantité d'O₂ combinée
 - Affinité de l'Hb pour l' O₂
 - Transport sanguin du CO₂
- Interactions O₂ / CO₂

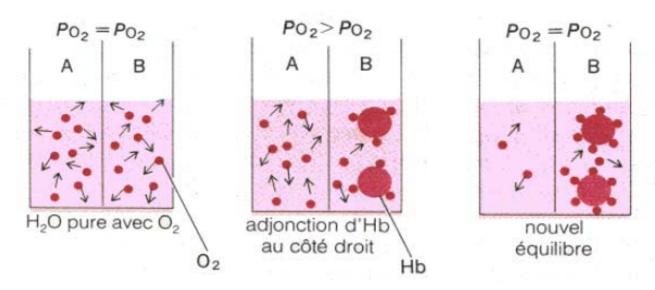
DEFINITIONS

4 étapes :

- Ventilation pulmonaire : mouvements d'air entre l'atmosphère et l'alvéole (Convection)
 - Mécanique ventilatoire
 - Ventilation alvéolaire
- Diffusion : passage des gaz de l'alvéole au capillaire pulmonaire (Diffusion)
- Circulation sanguine : transport des gaz des capillaires pulmonaires aux capillaires tissulaires (Convection)
- Diffusion : échanges des gaz entre le capillaire tissulaire et la cellule (Diffusion)

Transport des gaz

- Dans un liquide, un gaz peut être présent sous 2 formes :
 - Dissoute
 - Combinée
 - Liée à un transporteur (hémoglobine)
 - Transformée après réaction chimique (bicarbonates)
- Le volume de gaz dissous dans un liquide est déterminée par :
 - la pression partielle du gaz
 - son coefficient de solubilité S (S _{O2} = 0.003 ml / ml sang / mmHg)
 - selon la loi de Henry :

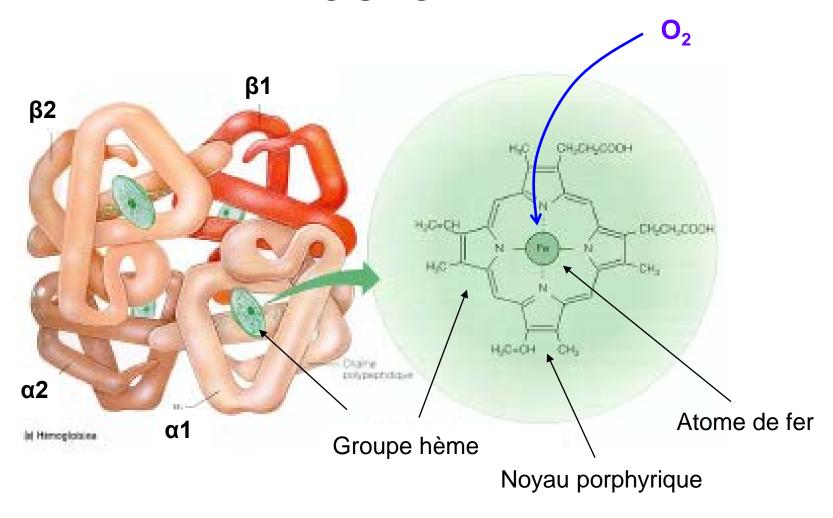

$$V_{gaz} = S_{gaz} \times \frac{P_{gaz}}{P_{atm}}$$

Transport des gaz

Pression partielle : quantité de gaz sous forme dissoute

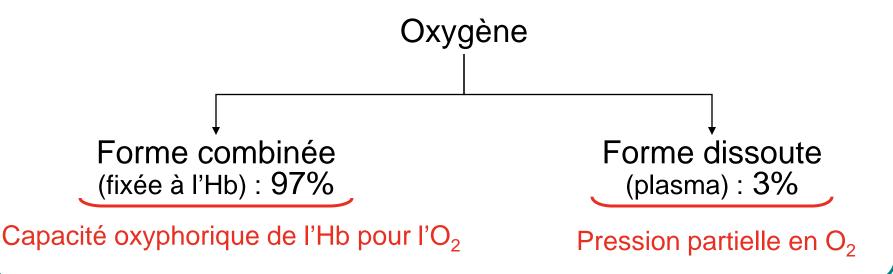
- Concentration ou contenu : quantité totale de gaz
- A l'équilibre, seules les pressions partielles s'équilibrent de part et d'autre de la membrane

- Après adjonction d'Hb d'un côté de la membrane, les pressions partielles ne sont pas égales dans les 2 compartiments
- Le gaz diffuse d'un compartiment à l'autre afin d'obtenir un état d'équilibre en terme de pressions partielles de part et d'autre de la membrane


HEMOGLOBINE

- Pigment respiratoire présent uniquement dans les hématies
- Composition :
 - Tétramère : 4 sous-unités de globine

i


- 2 sous-unités α : α₁, α₂
- 2 sous-unités β : β_1 , β_2
- Globine = chaîne polypeptidique de conformation hélicoïdale
- Chaque chaîne de globine est associée à un groupe hème (noyau porphyrique + 1 atome de fer)
- L'atome de fer se lie à 1 molécule d'O₂
- Hb : molécule allostérique
 - modification structurale > modification fonctionnelle
 - Modification de l'affinité pour l'O₂

HEMOGLOBINE

Chaque molécule d'Hb peux fixer au maximum 4 molécules d'O₂

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
 - Exploration
- Transport des gaz :
 - Hémoglobine
 - Transport sanguin de l'O₂
 - Saturation de l'Hb en O₂ et quantité d'O₂ combinée
 - Affinité de l'Hb pour l' O₂
 - Transport sanguin du CO₂
- Interactions O₂ / CO₂

Concentration = Contenu en O_2

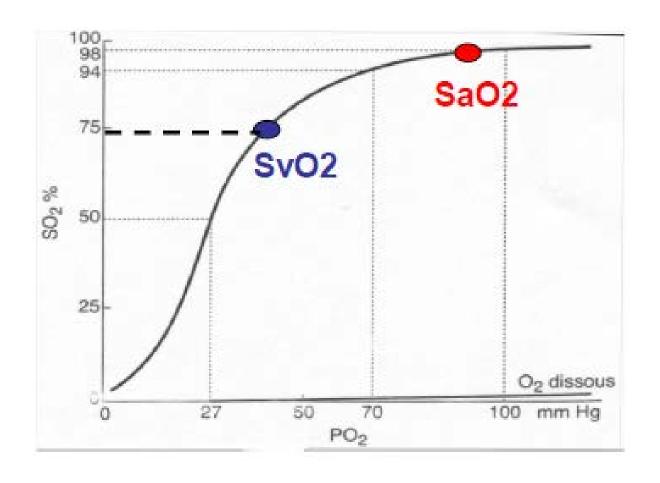
- Pouvoir oxyphorique de l'Hb :
 - PO = 1,34 ml/g
 - 1 g d'Hb peut fixer 1,34 ml d'O₂
- Capacité oxyphorique de l'Hb :
 - quantité maximale d'O₂ pouvant être fixée à l'Hb
 - CO = PO x [Hb]

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
 - Exploration

Transport des gaz :

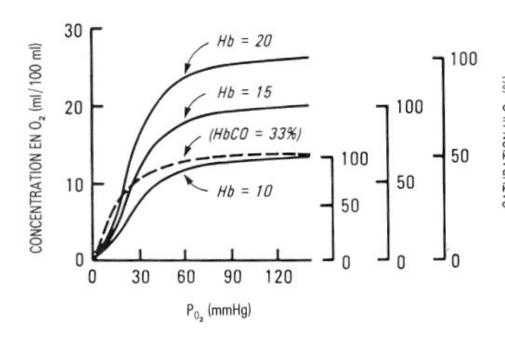
- Hémoglobine
- Transport sanguin de l'O₂
- Saturation de l'Hb en O₂ et quantité d'O₂ combinée
- Affinité de l'Hb pour l' O₂
- Transport sanguin du CO₂
- Interactions O₂ / CO₂

SATURATION DE L'Hb EN O₂


 Toutes les molécules d'Hb ne sont pas saturées en O₂, elles ne fixent pas toutes 4 molécules d'O₂

- Capacité oxyphorique de l'Hb = PO x [Hb]
- Quantité d' O_2 combinée (liée à l'Hb) = CO x Sa O_2 / 100 = PO. [Hb]. Sa O_2 / 100
- Saturomètre :

SATURATION DE L'Hb EN O₂



Courbe de dissociation de l'oxyhémoglobine : Courbe de Barcroft

QUANTITE D'O₂ COMBINE

 $QO_2 = CO \times SaO_2 / 100 = PO.$ [Hb]. $SaO_2 / 100$ Elle dépend de :

1. La concentration d'Hb dans le sang

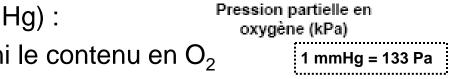
Pour [Hb]: 15 g /100 ml de sang
 et Sa O₂ de 98 % :

$$Qo_2 = 1.34 \times 15 \times (98 / 100) = 19.7 \text{ ml d'}O_2 / 100 \text{ ml}$$

• Pour [Hb]: 10 g /100 ml de sang et Sa O₂ de 98 % :

$$Qo_2 = 1.34 \times 10 \times (98 / 100) = 13.1 \text{ ml d'}O_2 / 100 \text{ ml}$$

QUANTITE D'O₂ COMBINE


$$QO_2 = CO \times SaO_2 / 100 = PO. [Hb]. SaO_2 / 100$$

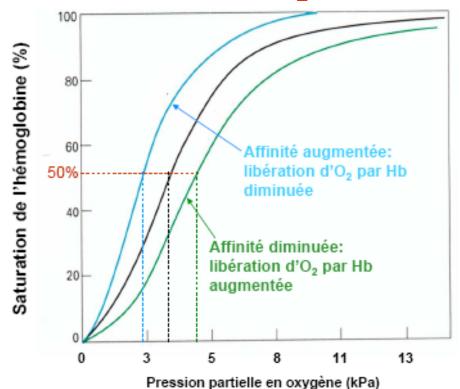
Elle dépend de :

- 1. [Hb] sanguine
- 2. La saturation (liée à PO₂)

↑ de la PO₂ n'affecte pas la Sa O₂ ni le contenu en O₂

- Zone B : $8 < PO_2 < 13 \text{ kPa}$:
 - \downarrow PO₂ \rightarrow faible \downarrow de la SaO₂ et du contenu en O₂
- Zone C: PO₂ < 8:
 faible ↓ de PO₂ → forte ↓ de SaO₂ et du contenu en O₂

В


QUANTITE D'O₂ COMBINE

 $QO_2 = CO \times SaO_2 / 100 = PO$. [Hb]. $SaO_2 / 100$

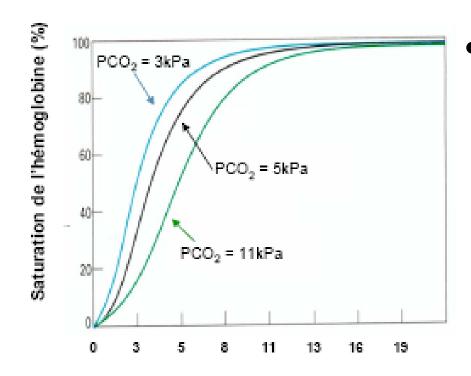
Elle dépend de :

- 1. La concentration d'Hb dans le sang
- 2. De la saturation

3. De l'affinité de l'Hb pour l'O₂

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
 - Exploration

Transport des gaz :


- Hémoglobine
- Transport sanguin de l'O₂
- Saturation de l'Hb en O₂ et quantité d'O₂ combinée
- Affinité de l'Hb pour l' O₂
- Transport sanguin du CO₂
- Interactions O₂ / CO₂

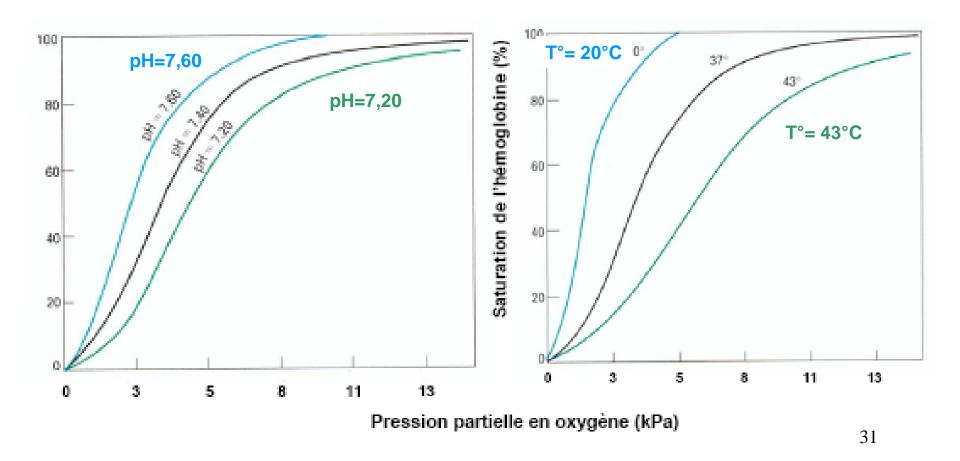
AFFINITE DE L'Hb POUR L'O₂


- Modification de l'affinité de l'Hb pour l'O₂
 - Augmentation de l'affinité : favorable à l'hématose
 → fixation de l'O₂ au niveau pulmonaire
 - Diminution de l'affinité : favorable à l'oxygénation des tissus → libération de l'O₂ aux cellules

AFFINITE DE L'Hb POUR L'O₂

- Modifiée par :
 - la PCO₂

Pression partielle en oxygène (kPa)



- Si PCO₂↑ (→ ↓ pH) :
 ↓ de l'affinité de l'Hb
 → libération d'O₂ au niveau tissulaire
- Si PCO₂ ↓ (→ ↑ pH) :
 ↑ de l'affinité de l'Hb
 → fixation de l'O₂ au niveau pulmonaire

AFFINITE DE L'Hb POUR L'O₂

- Modifiée par :
 - le pH sanguin

- la température

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
 - Exploration

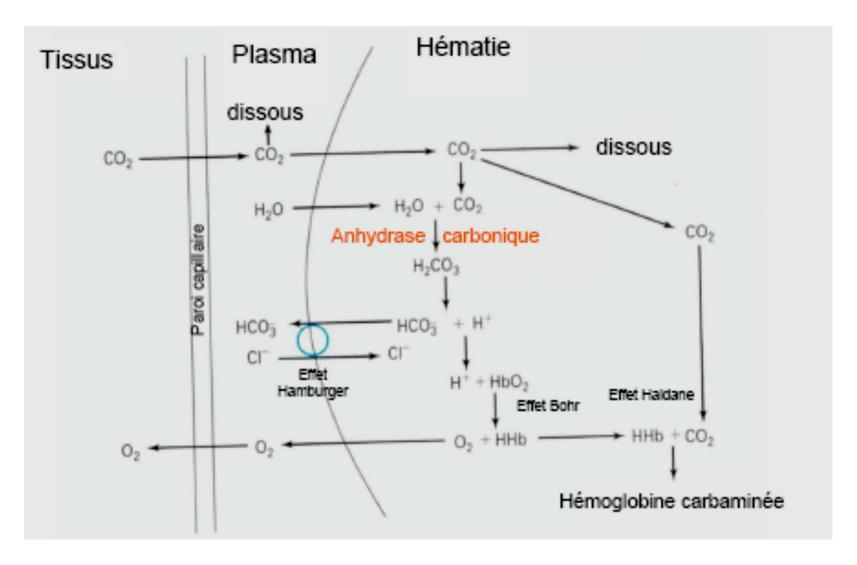
Transport des gaz :

- Hémoglobine
- Transport sanguin de l'O₂
- Saturation de l'Hb en O2 et quantité d'O2 combinée
- Affinité de l'Hb pour l'O₂
- Transport sanguin du CO₂
- Interactions O₂ / CO₂

Le CO₂ est transporté sous 3 formes :

- 1. Sous forme dissoute = 10%
 - Plasma
 - Hématies
- 2. Sous forme liée à l'Hb (Hb carbaminée) = 20%
- 3. Sous forme combinée (Bicarbonates) = 70 %
 - Plasma
 - Hématies

 O_2 combiné = lié à l'Hb


≠ CO₂ combiné = bicarbonates (HCO₃-)

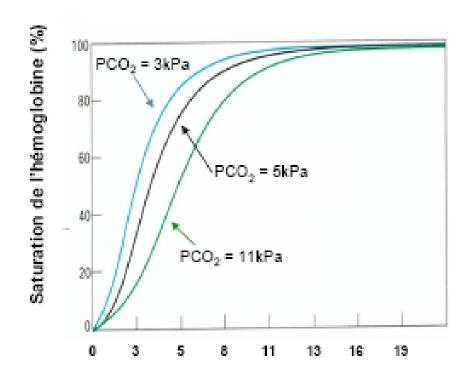
- 1. CO₂ dissous : 10 %
 - Plasma, cytoplasme érythrocytaire
 - Faible fraction du CO₂ total
 - Mais passage obligé

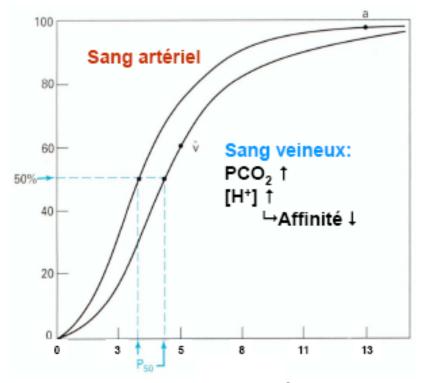
- 2. CO₂ lié à l'Hb : 20%
 - Hb carbaminée
 - Site de fixation sur l'hémoglobine ≠ de celui de l'O₂: fonction NH₂ terminale des chaînes protéiques : Hb-NH₂ + CO₂ ↔ Hb-NH-COOH

- 3. CO₂ combiné (bicarbonates) : 70%
 - plasmatique
 - HCO₃- provenant des hématies (+++, effet Hamburger)
 - $H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$
 - réaction lente car pas d'anhydrase carbonique plasmatique
 - CO₂ combiné intra-érythrocytaire +++
 - $H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$
 - réaction rapide par l'anhydrase carbonique intraérythrocytaire

- Diffusion alvéolo-capillaire
 - Membrane alvéolo-capillaire
 - Principes physiques
 - Diffusion de l'O₂
 - Diffusion du CO₂
 - Exploration

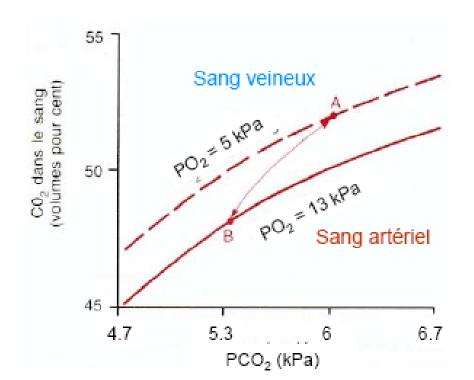
Transport des gaz :


- Hémoglobine
- Transport sanguin de l'O₂
- Saturation de l'Hb en O₂ et quantité d'O₂ combinée
- Affinité de l'Hb pour l' O₂
- Transport sanguin du CO₂
- Interactions O₂ / CO₂


INTERACTIONS O₂ / CO₂

• Effet Bohr:

- La PCO₂ modifie l'affinité de l'Hb pour l'O₂
- Pour une même PO₂, l'affinité de l'Hb pour l'O₂ est plus importante si la PCO₂ est basse



Pression partielle en oxygène (kPa)

INTERACTIONS O₂ / CO₂

- Effet Haldane (< effet Bohr):
 - La PO₂ influence l'affinité de l'Hb pour le CO₂
 - Pour une même PCO₂, l'affinité de l'Hb pour le CO₂ est plus importante si PO₂ basse

CONCLUSION

- Diffusion alvéolo-capillaire : loi de Fick
- Structure de l'Hb et fixation de l'O₂
- Courbe de Barcroft
- Facteurs influençant la liaison O₂-Hb
- Transport plasmatique du CO₂ (anhydrase carbonique)
- Effet Bohr