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8.11.1 Introduction

8.11.1.1 Early Diagenesis and the Global Sedimentary Cycle

The global sedimentary cycle and attendant biogeochemical

processes are major controls on the composition of the Earth’s

surface over a wide spectrum of timescales (Drever et al., 1988;

Kump et al., 2000; see Chapter 9.15). One part of this grand

cycle is the deposition and buildup of lithogenic and biogenic

debris at the seafloor and the dynamic physical and chemical
atise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975
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interactions of these deposits with overlying water and the

atmosphere. Seabed geochemical interactions are driven by

components of sedimentary mixtures that are thermodynami-

cally unstable and undergo a wide range of reactions, including

hydrolysis, dissolution, oxidation–reduction, precipitation, and

recrystallization. Many such reactions are rapid, biologically

mediated, and occur in the upper few microns to meters of

deposits where both dissolved and particulate reactants and

products can readily exchange with adjacent regions.
-7.00611-2 293
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The chemical and physical changes that accompany these reac-

tions and occur during the initial stages of sediment accretion at

low temperature (usually <50 �C) define early diagenesis. The

factors and mechanisms internal to deposits that govern diagen-

esis are referred to as diagenetic processes, and the associated

mass transport of solutes, fluids, and particulate material across

the upper surface of deposits are termed benthic or sediment–

water fluxes (Burdige, 2006; Schulz, 2006).

Because sedimentary deposits behave as open systems, early

diagenetic reactions and associated mass refluxing can have

major impacts on ocean water composition and ecosystem

processes. These impacts are particularly obvious in shallow

waters (<50 m) where benthic release of regenerated nutrients

(e.g., N, P, and Si) interacts closely with the biologically pro-

ductive photic zone and can supply 25–80% of planktonic

nutrient requirements (Heip et al., 1995; Jahnke, 2004;

Middelburg and Soetaert, 2004). However, more subtle yet

significant effects on a range of elemental cycles (e.g., N, P,

Si, K, Li, F, and Fe) in the ocean and atmosphere can also

be demonstrated and are still being quantified (Jahnke, 1996;

Michalopoulos and Aller, 2004; Middelburg and Soetaert,

2004; Middelburg et al., 1996; Sayles, 1979; Severmann

et al., 2010; see also Chapter 10.12). Diagenetic processes

can significantly alter sediment composition andmodify initial

inputs of constituents that would otherwise be directly useful

for paleoenvironmental reconstruction, for example, selective

dissolution of skeletal fossils, but these same processes can

leave an alternative record of environmental conditions in

the form of authigenic mineral suites and derived composi-

tional relationships (e.g., S and Fe; Goldhaber, 2003; Lyons

et al., 2009; Raiswell and Canfield, 1998). The recognition and

accurate reading of this record depends on a detailed under-

standing of diagenesis in varied depositional conditions.

Biogenic debris in particular is often inherently unstable at

Earth surface conditions and, once separated from sites of

formation and active maintenance by energy flow, undergoes

progressive net reactions. Organic matter, carbonates (CaCO3

and CaxMgx�1CO3), and opaline silica (SiO2) are the domi-

nant general classes of biogenic solids involved in early diage-

netic reactions, authigenic mineral product formation, and

biogeochemical cycling in the seabed (Emerson and Hedges,

2003; Martin and Sayles, 2003; see Chapters 9.4 and 10.12).

Examples of the overall patterns of change of such reactants and

the corresponding buildup of products with depth in deposits

during diagenesis are illustrated schematically in Figure 1. The

behaviors of each of these biogenic components and reactive

lithogenic fractions, such as Fe, Mn, and Al oxides, are closely

coupled, directly or indirectly, during burial. Organic matter

decomposition and remineralization plays a central role in

early diagenesis because of its impact on the master reaction

variables pH and pe (Eh – redox potential), its direct role in

the CO2 cycle, its role in generating authigenic minerals, its

coupling to the recycling of nutrient elements to overlying

water and the atmosphere, and its fueling of secondary produc-

tion in the benthic ecosystem.On longer timescales, the quantity

of organic matter (or an equivalent reduced material, such as

authigenic pyrite) that escapes diagenetic oxidation and is

sequestered in sedimentary rocks is directly tied to atmospheric

oxygen levels and to societal energy resources (Berner, 1982,

2004; Holland, 1984). Thus, understanding the early diagenetic

 

 
 
 
 
 

Treatise on Geochemistry, Second Editio

 

controls on organic matter remineralization and preservation,

and developing predictive models to describe them, are central

goals in diagenetic research.
8.11.1.2 General Classes of Conceptual Diagenetic Models

Five general classes of conceptual models are commonly uti-

lized separately or in combination for the investigation of

diagenetic processes and as a basis for interpretation and pre-

diction of compositional patterns and mass fluxes (Berner,

1980; Boudreau, 1997; Burdige, 2006; Emerson and Hedges,

2003; Middelburg and Soetaert, 2004; Van Cappellen et al.,

1993): (1) thermodynamic models to evaluate solution

speciation, solution saturation states, reaction probability,

and mineral composition and stabilities in the context of

known energy relations; (2) stoichiometric models to define

or infer reactions and reaction balances and to examine rela-

tionships between reactant and product abundances; (3) trans-

port models to evaluate mass fluxes, compositional relations,

and system time dependence; (4) kinetic models to examine

system time dependence, extent of reactions, and mechanistic

relationships between reactants and products; and (5)

ecological models that combine theories of microbial substrate

competition, benthic community structure, and ecological

interactions with thermodynamic, transport, and kinetic

models of sedimentary biogeochemical cycling. As illustrated

in the succeeding text, combinations of these models, for

example, transport–kinetic reaction–equilibrium modeling,

play major roles in the recognition, quantification, and inter-

pretation of diagenetic processes, the quantification of mass

fluxes, and the prediction of diagenetic responses under steady

and unsteady conditions. Proper application of any of these

models requires a thorough understanding of the depositional

environment and ecosystem context in which diagenesis

occurs.
8.11.1.3 Diagenetic Regimes and Depositional
Environments

The expression of particular sets of early diagenetic reactions in

deposits and their interactions with overlying water depend

strongly on the depositional environment and the correspond-

ing boundary conditions and internal transport–reaction

regime. Depending on the environmental setting and history,

deposits may be composed of coarse- or fine-grained particles

and be more or less permeable to advective flow of fluid; they

may be relatively permanent and accrete steadily upward; they

may be transient accumulations that exchange dynamically

and frequently with adjacent regions; they may be inhabited

by macrobenthic communities that rework particles and bioir-

rigate the seabed; or they may lie in the photic zone and be

affected by plant rhizospheres or algal mats. These different

depositional conditions result in a spectrum of possible diage-

netic transport–reaction regimes, the broadest representation of

which occurs in estuarine, continental shelf, and margin envi-

ronments where most sediment, �80–90% (Berner, 1982; Ein-

sele, 2000; Milliman and Farnsworth, 2011), is processed and

accumulates (Figure 2). Each regime can produce very different

balances between specific boundary conditions, internal reac-

tions, benthic fluxes, burial efficiencies, and authigenicminerals.
n, (2014), vol. 8, pp. 293-334 
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Figure 1 (a) Schematic depiction in vertical cross section of major diagenetic processes exemplified by the remineralization of organic matter in
marine deposits. After deposition, reactive organic matter reductant is decomposed and oxidized. The rate of decrease of organic substrate with time
and depth is a function of both its inherent reactivity and burial conditions, as is the quantity of residual carbon eventually preserved. A set of naturally
occurring dissolved and particulate oxidants (O2, NO3

�, Mn oxides, Fe oxides, SO4
2�, and CO2) is utilized successively by the benthic community in

these reactions, producing suites of corresponding dissolved products (e.g., HCO3
�, HPO4

2�, and HS�) and reduced authigenic minerals. These
reaction products build up with depth or are transported into overlying water and adjacent regions depending on a range of boundary and internal
properties determined by the depositional environment and ecosystem (after Aller, 2004). (b) Schematic representation of diagenetic reactive Si cycle.
Biogenic opaline SiO2 delivered to sediments undergoes progressive alteration and dissolution. A portion is recycled as dissolved Si(OH)4 into overlying
water, a portion is buried, and a portion is subject to conversion into authigenic clays. The formation of clay consumes a wide range of solutes, including
Al(OH)4

�, Kþ, Liþ, Fe2þ,3þ, Mg2þ, and F�.
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Water column and lateral sediment transport drive material

exchange between these local diagenetic environments and the

corresponding sedimentary facies over various timescales, rang-

ing from minutes to thousands of years. An accurate conceptu-

alization of elemental cycling in sedimentary deposits,

sediment–water interactions, and global-scale models requires

a proper description of transport–reaction relationships in these

individual diagenetic regimes and also requires an evaluation of

their relative role and coupling in different depositional systems.
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A subset of diagenetic regimes dominates most subaqueous

environments globally, several members of which are empha-

sized and described individually here (Figure 2(a)–2(d)).

The conceptual model of transport and reaction at the heart

of most early diagenetic theory was developed approximately

50 years ago, initially for use in deepwater muds of the

California margin and borderlands (Berner, 1964). Deposits

are modeled as laterally homogeneous bodies, diffusively and

advectively open to exchange of solutes and particles with an
tion, (2014), vol. 8, pp. 293-334 
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Figure 2 A suite of steady and unsteady diagenetic regimes is typically present in marine environments, the widest spectrum of which is expressed in
continental margin and coastal deposits. The individual regimes differ in boundary conditions, sediment mass properties, and interior transport–reaction
processes. Major examples, shown schematically, include (a) Steady accumulation regime assumed in most diagenetic models (e.g., Berner, 1980;
Boudreau, 1997; Burdige, 2006). (b) Bioturbated surface region within an otherwise steadily accumulating deposit. (c) Highly mobile and periodically
reworked sediment layer unconformably overlying older, relict deposit. Fluid mud, often tidally mobile, may be present. (d) Permeable sands and
physical/biofiltration zones dominated by advective flow, such as in beach face, river bed, bar, or open shelf edge areas (Huettel et al., 1996; Jahnke,
2004; Middelburg and Soetaert, 2004). (e) Unsteady, exhumed deep deposits exposing previously reduced material (relict) directly to oxygenated water
(e.g., mobile layer removed; Blair and Aller, 1996). Macrofaunal colonization and biofiltration can occur. (f) Major pulsed turbidite sedimentation and
stable bioturbation alternation sequence (e.g., Anschutz et al., 2002; Thomson et al., 1998). (g) Rhizosphere, benthic primary production and
bioturbation dominated surface zone (e.g., mangrove fringe; Alongi, 1991). (h) Permeable salt marsh peat and rhizosphere system, two-dimensional
advective exchange (creek bank) (Bollinger and Moore, 1993; Howarth, 1993). (i) Supratidal salt pans and halophyte region (e.g., Alsharhan and Kendall,
2003; Kinsman, 1969; Swart et al., 1989) (after Aller, 2004).
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overlying water reservoir, and accreting upward in the vertical

dimension at a regular rate equivalent to net sedimentation

(Figure 2(a); Section 8.11.3.2). Advection is primarily deter-

mined by sediment accumulation and, particularly in the

surface-most region, compaction. These assumptions, which

view sediments as a type of one-dimensional plug flow reactor

at steady state, have proven extraordinarily robust and remain

the principal basis for the quantitative elucidation and
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interpretation of a range of fundamental diagenetic relation-

ships in modern environments and for inferences from ancient

deposits in the geologic record (Berner, 1980; Canfield, 1994;

Emerson and Hedges, 2003; Hedges et al., 1999; Martin and

Sayles, 2003; Middelburg et al., 1997; Tromp et al., 1995).

They are particularly appropriate assumptions for fine-grained

deposits in relatively quiescent, low O2 environments with

minimal or no bottom fauna. Over the years, basic model
n, (2014), vol. 8, pp. 293-334 
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formulations derived from these concepts have become pro-

gressively more complicated, numerically based, and used for

global-scale extrapolations of coupled diagenetic patterns and

reaction balances (Archer et al., 2002; Boudreau, 1997;

Soetaert et al., 1996a; Van Cappellen and Gaillard, 1996).

Under oxygenated waters, physically stable sediments are

generally inhabited by a diverse benthic fauna (e.g., poly-

chaetes, crustaceans, and mollusks) that rework and irrigate

deposits during feeding, burrowing, respiratory ventilation,

and construction activities. These activities, in total termed

bioturbation, are focused into the upper �10–50 cm of

deposits but may extend several meters into the seabed. Bio-

turbation creates complex, time-dependent, three-dimensional

transport–reaction patterns, resulting in coupling between

reactions and solute exchange that would not otherwise occur

in a one-dimensional system, and which are subject to all the

complex ecological interactions and dynamics that occur

within benthic communities (Figure 2(b)). Particle transport

in the bioturbated zone is not determined exclusively by net

sedimentation but rather by modes of particle mixing that can

be variously approximated by diffusion, advection, or nonlocal

exchange mechanisms depending on the time and space scales

characterizing a sediment property and the temporal–spatial

resolution of sampling (Aller, 1982b; Boudreau, 1986;

Meysman et al., 2008). Similarly, approaches to incorporating

these biogenic effects into models of solute transport have used

modifications of the primary one-dimensional conceptualiza-

tion with empirically adjusted rates of biodiffusion, bioadvec-

tion, and nonlocal source–sink functions to account for altered

solute transport processes. An alternative conceptual approach

to the adjustment of transport parameters has been to abandon

the one-dimensional formulation (Figure 2(a)) and define a

simplified three-dimensional analogue (a type of conformal

mapping) that duplicates the primary properties and scaling of

the complex, biogenic transport–reaction geometry (Aller,

1980b, 2001; Meysman et al., 2006). This latter class of

model, and more complex exact forms of geometric descrip-

tions of burrow systems permeating deposits (e.g., Koretsky

et al., 2002), allows the examination of processes such as

redox reaction coupling as a function of biogenic three-

dimensional transport geometry and benthic community

structure (dictated by animal size, abundance, and distribu-

tions). The effect of macrofaunal digestion of sedimentary

debris is seldom explicitly incorporated into diagenetic

models, although its impact on dissolution–precipitation

(e.g., CaCO3; redox-sensitive metals) and organic matter remi-

neralization processes is potentially considerable (Jansen and

Ahrens, 2004; Mayer et al., 1997; Woulds et al., 2012).

During movement of lithogenic debris from continental

sources into deepwater depocenters, sediments typically transit

or are stored in energetic shallow water environments that are

well oxygenated, including estuarine channels and deltaic top-

set regions at <50 m depth. In these environments, surface

deposits are commonly subject to periodic or stochastic

reworking by energetic tides, waves, and currents and episod-

ically reoxidized. In fine-grained deposits, a local two-zone

diagenetic transport–reaction regime can result, consisting of

a surface mobile layer unconformably overlying more consol-

idated, often relict, deposits (Figure 2(c)). Fluid mud forma-

tion may occur as a third distinct water–sediment transition
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zone, further enhancing sediment mobility, reoxidation reac-

tions, and sediment–water exchange (Allen et al., 1980; Kineke

et al., 1996). These environments are virtually devoid of large

macroinfauna and are dominated by abundant and metaboli-

cally diverse bacteria (Aller and Aller, 2004; Aller et al., 2010).

The spatial and temporal scaling of mobile sediment layers

varies substantially. Vertical reworking must involve at least

several centimeters of a deposit in order to differentiate this

case from the simple resuspension of a thin layer (micrometer

to millimeter) of particles at the sediment–water interface,

which occurs frequently in most sedimentary environments.

Overall, a frequently disturbed mobile layer as a unit has

properties of an unsteady batch reactor, rather than the more

commonly assumed advective or plug flow reactor

(Figure 2(a)). In sharp contrast to these latter diagenetic

models where net sedimentation rate is a critical master vari-

able, net accumulation has only a minor role in determining

seabed batch reactor properties. The critical master variables

for the seabed batch reactor are frequency of disturbance,

efficiency of reoxidation–exchange (related to duration of

exposure), and magnitude (depth). These reflux variables are

determined by sedimentary dynamics rather than net

sedimentation and result in periodic or episodic resetting of

reaction conditions as discussed in the succeeding text. Because

deltaic systems, where such conditions are common, are the

major depocenters for sediment on Earth, batch reactor dia-

genesis has a significant impact on global elemental cycling

(Aller and Blair, 2006; Michalopoulos and Aller, 2004).

Whereas fine-grained deposits have low permeability with

respect to advective flow of fluids, coarse-grained deposits,

particularly well-sorted sands, have high permeabilities and

overlying water readily flows through them in response to

pressure gradients generated by waves and the interactions of

boundary currents with bedforms (Huettel and Webster,

2001). Sands are common in energetic coastal regions, such

as shoreface deposits, mobile tidal flats, and river mouth bars,

and can also dominate the outer portion of continental shelves

as relict deposits from lower sea stands (60% of shelf area;

Hayes, 1967; Walsh, 1988). Suspended particles in overlying

water, a large portion of which are typically small organic-rich

planktonic debris, are filtered out as overlying water flows

through sands (Huettel et al., 1996, 2007). Such physical

filtration supplies reactive material independently from net

sedimentation, similar in result to the role of entrainment in

the case of mobile muds. In addition, sands are often inhabited

by well-developed suspension feeding communities or large

deposit feeders, which further enhance incorporation of reac-

tive particles by biodeposition and extensively rework and

bioirrigate the seabed (Heip et al., 1995; Middelburg and

Soetaert, 2004). Thus, although many of the same reactions

occur in both muds and sands, coarse-grained deposits can be

exceedingly complex with respect to transport–reaction condi-

tions and interact extensively with overlying water in ways

distinctly different from stable mud deposits having low per-

meability (Huettel et al., 1998). The flow-through nature of

sands, the low surface areas of particles per unit volume, and

the mineralogies commonly found in sands (e.g., quartz and

low reactive Fe oxides and hydroxides) result in a low efficiency

of storage of diagenetic reactants and authigenic products

(Hedges and Keil, 1995; Mayer, 1994a,b). These properties
tion, (2014), vol. 8, pp. 293-334 
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result in a minimal sedimentary record of the high benthic

fluxes and intense reactivity that typically characterize surficial

sands (e.g., low Corg). In this respect, sand deposits are again

similar to mobile muds: both types of diagenetic regimes have

a major role as seabed reactors that are not necessarily evident

in residual burial fluxes of diagenetic products.
8.11.2 Diagenetic Oxidation–Reduction Reactions

8.11.2.1 Biogeochemical Redox Reaction Sequence

General reactions of organic matter will be considered initially

not only because of their critical role in diagenetic processes

but also because organic matter behavior and associated redox

reaction patterns can be used readily to illustrate the range of

factors that determine the varied possible outcomes of diagen-

esis as a function of the depositional environment. One of the

fundamental concepts guiding the interpretation of early dia-

genetic processes associated with organic matter remineraliza-

tion is that, given an initial set of natural oxidants in

sedimentary deposits, biogeochemical oxidation–reduction

(redox) reactions follow a regular progression with time, in

many cases equivalent to depth (Claypool and Kaplan, 1974;

Froelich et al., 1979; Stumm and Morgan, 1996). The primary

naturally occurring oxidants are O2, NO3
�, Mn oxides, Fe

oxides, SO4
2�, and CO2. These oxidants can react with organic

and inorganic reductants, potentially yielding different quan-

tities of free energy for the growth of heterotrophic and che-

moautotrophic bacteria that commonly mediate the reactions

(Table 1 and Figure 1). These differential energies of reaction

together with the ecological theory of competitive exclusion

result in the principle that oxidants are used preferentially and

sequentially by heterotrophic bacteria to oxidize organic C

substrate as a function of free energy yield, optimizing growth.

As discussed in more detail subsequently, the further combi-

nation of this principle with the idea that in many cases

deposits accrete steadily, predicts a biogeochemical reaction

stratigraphy where the presence and scales of reaction zones

are determined by the relative fluxes of oxidants and reduc-

tants, diffusive transport, and advection rates of material away

from the sediment–water interface (Froelich et al., 1979).

 

Table 1 The standard free energy of reaction, DG0
r, for the dominant env

Reaction DG0
r (kJ mo

Oxidation
CH2O

a
(aq) þ H2O! CO2(g) þ 4Hþ þ 4e� �27.4

2/3CH3OH(aq)þ 2/3H2O! 2/3CO2(g)þ4Hþþ4e� 12.1
½ CH4(aq)þH2O!½CO2þ4Hþþ4e� 57.2
Reduction
4e�þ4HþþO2(aq)!2H2O �491.0
4e� þ 4:8Hþ þ 0:8NO3

�
aqð Þ ! 0:4N2 gð Þ þ 2:4H2O �480.2

4e� þ 8Hþ þ 2MnO2 sð Þ ! 2Mn2þ aqð Þ þ 4H2O �474.5
4e� þ 12Hþ þ 2FeOOH sð Þ ! 4Fe2þ aqð Þ þ 8H2O �258.5
4e�þ5Hþ þ ½SO4

2�
(aq) ! ½H2S(aq) þ 2H2O �116.0

4e�þ4Hþþ½CO2(g)!½CH4(aq)þH2O �57.2

Standard free energies of formation from (Stumm and Morgan, 1996).
aCH2O represents average organic matter with carbohydrate oxidation state (0) (DG0f¼�129

decreases (e.g., alcohols and lipids) (Adapted from Emerson and Hedges, 2003).
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Although net redox reaction relationships and dominant

metabolic reaction sequence are well represented by the simple

set of major oxidants and organic C reductant, as a rule, mul-

tiple nested redox reactions and intermediate reactants and

products can and do occur within individual zones. For exam-

ple, a complex network of oxidation–reduction reactions and

intermediates (SO3
�, S2O3

2�, polythionates, and polysulfides)

characterizes S cycling associated with the net overall reduction

of SO4
2� (Canfield et al., 2005; Goldhaber, 2003; Jorgensen,

2006). Another more recently recognized example is Mn3þ,
which is an intermediate product during reduction and oxida-

tion cycling of Mn, and can represent as much as 80% of total

dissolved Mn in pore water (Madison et al., 2011). This pow-

erful dissolved oxidant can diffuse into anoxic sediments along

concentration gradients when total dissolved Mn otherwise

appears constant and which traditionally would be interpreted

as composed entirely of Mn2þ.
It is critical to recognize that the oxidant sequence reflects

not only the metabolic optimization of Corg remineralization

and free energy yields but also the relative thermodynamic

stabilities and compatibilities of specific oxidized and reduced

species associated with each major half reaction, that is, their

order within the electromotive reaction series (Table 1). As a

result of natural transport processes within deposits, a wide

range of oxidants and reductants, either in solution or as

particles, are continually brought into unstable associations

or can react, most often through biologically mediated path-

ways which are chemoautotrophic (Table 2). If reduced species

in solution or solids are transported into a region where a

higher-order oxidant is present, they can be oxidized, or vice

versa. For example, HS� is energetically unstable in the pres-

ence of FeOOH and may be oxidized spontaneously to S or

SO4
2�. Similarly, the transport or release of Fe2þ into a region

containing MnO2 will result in the oxidation of Fe2þ and

reduction of MnO2. The generation of dissolved intermediates

that are diffusively mobile, for example, NO3
�, Mn3þ, or che-

lated Fe3þ, and that can migrate into adjacent redox zones

greatly complicates redox interactions during general reaction

progressions in sediments. Globally, the anaerobic (SO4
2�)

and aerobic oxidation of migrating CH4 represents one of the

most important expressions of the interaction between mobile
ironmental redox reactions

l�1) (half reaction) DG0
r (kJ mol�1) (whole reaction CH2O)

�518.4
�507.6
�501.9
�285.9
�143.4
�84.6

kJ mol�1). More oxidant is required per mole CO2 produced as Corg oxidation state

n, (2014), vol. 8, pp. 293-334 



Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes 299 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author's personal copy
dissolved reductants and oxidants both within and at the sur-

face of sedimentary deposits (Burdige, 2006; Jorgensen and

Kasten, 2006; Reeburgh, 2007).

The occurrence of any of the diagenetic reactions, such as

those in Table 1 or 2, depends on the accessibility of reactants

one to another. Thus, most diagenetic reactions involving

solutions and solids are dominated by surface associated reac-

tants rather than bulk solid compositions. Reactants in the

interior of mineral structures, while measureable analytically

in bulk analyses, are relatively inaccessible during early diagen-

esis. For example, Fe3þ in the interior of specific mineral par-

ticles may react only very slowly with HS� present in pore

solution (104–105 years; Canfield et al., 1992; Goldhaber and

Kaplan, 1974). Likewise, Corg may be incorporated into min-

eral structures or closely packed aggregates, inhibiting reminer-

alization (Curry et al., 2007; Hedges and Keil, 1995; Mayer,

1994a,b). Diagenetic reactivity is therefore defined in large part

by physical distribution and availability as well as native chem-

ical composition and thermodynamic stability.

8.11.2.1.1 Coupled stoichiometric relations
In addition to the stoichiometric requirements of oxidation–

reduction balances, minor and trace constituents of organic

matter are often remineralized and released to solution in

 

Table 2 Example aerobic and anaerobic metabolite oxidation reactions th

Reactions coupled to O2 reduction

NH4
þ þ 2O2 ! NO3

� þ 2Hþ þ H2O
Mn2þþ 1/4O2þ 3/2H2O!MnOOHþ2Hþ

Mn2þþ½ O2þH2O!MnO2þ2Hþ

Fe2þ þ 1/4O2 þ 5/2H2O!Fe(OH)3þ 2Hþ

FeSþ 9=4O2 þ 5=2H2O ! Fe OHð Þ3 þ SO4
2� þ 2Hþ

FeS2 þ14=4O2 þ 7=2H2O ! Fe OHð Þ3 þ 2SO4
2� þ 4Hþ

½ CH4þO2 !½ CO2þH2O

Reactions coupled to Mn oxide reduction

4MnO2 þ NH4
þ þ 6Hþ ! 4Mn2þ þ NO3

� þ 5H2O
3=2MnO2 þ NH4

þ þ 2Hþ!3=2Mn2þ þ½ N2 þ 3H2O
2Hþ þMnO2þ1=4FeS ! Mn2þþ1=4SO4

2�þ1=4Fe
2þ þ H2O

3HþþMnO2þHS�!Mn2þþS0þ2 H2O
MnO2þ2Fe2þþ4H2O!Mn2þþ2Fe(OH)3þ2Hþ

Reactions coupled to SO4
2� reduction

CH4 þ SO4
2� ! HCO3

� þ HS� þ H2O

All reactions shown in Table 2 are spontaneous for typical concentrations found in specific z

Table 3 Overall stoichiometric (C/N/P) organic matter oxidation reactions

Metabolic redox process Overall reaction

Aerobic respiration (CH2O)x(NH3)y(H3PO4)zþ (xþ
Nitrate reduction 5 CH2Oð Þx NH3ð Þy H3PO4ð Þz þ
Manganese reduction CH2Oð Þx NH3ð Þy H3PO4ð Þz þ 2
Iron reduction CH2Oð Þx NH3ð Þy H3PO4ð Þz þ 4
Sulfate reduction 2 CH2Oð Þx NH3ð Þy H3PO4ð Þz þ
Methane production (CH2O)x(NH3)y(H3PO4)z! x/2

Source: Modified from Aller, 1980a; Tromp et al., 1995. Note: NH3, H3PO4, and H2S commo

alkalinity balances, and potential for additional reactions.
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proportion to their abundance in metabolized substrate

sources. As illustrated in Table 3, overall stoichiometric rela-

tions can be written for C/N/P during the remineralization of

organic matter. Other non-Corg constituents, such as I, also

show stoichiometric release, but at far lower concentrations

than N and P (e.g., 0.4–0.6 mmol I mol�1C�1) (Ullman and

Aller, 1985). These stoichiometric relations may vary at differ-

ent stages of decomposition; for example, P and N can be

preferentially released relative to C, during the initial stages

of reaction, reflecting greater lability of P- and N-rich organic

matter fractions, but tend in many cases toward the bulk

composition of reactive organic matter when time averaged

(Burdige, 2006). The usual representation of reduced products

in these overall reactions reflects thermodynamic stabilities

dictated by redox conditions, for example, while NH4
þ might

be released initially during the ammonification of proteins,

NO3
� is the stable form of dissolved N in the presence of O2

and is rapidly generated during biological nitrification

(Table 2). Stoichiometric relationships expressed during dia-

genesis, for example, in pore water compositions, often repre-

sent the net of multiple reactions, including uptake or

precipitation, and may or may not simply reflect a single

dominant process, such as heterotrophic remineralization of

Corg or unidirectional dissolution of a mineral.
at can occur in marine sediments

Reactions coupled to NO3
� reduction

NH4
þ þ NO2

� ! N2 þ 2H2O (anammox)
5=3NH4

þ þ NO3
�!4=3N2 þ 3H2O þ2=3H

þ (anammox)
NO3

�þ5=8FeSþ Hþ!1=2N2þ5=8SO4
2�þ5=8Fe

2þ þ ½ H2O
NO3

� þ 5Fe2þ þ 12H2O ! 5Fe OHð Þ3þ½ N2 þ 4 Hþ
5=2Mn2þ þ NO3

� þ 2H2O!5=2MnO2þ1=2N2 þ 4Hþ

Reactions coupled to Fe oxide reduction

2Fe(OH)3þHS�þ5Hþ!2Fe2þþS0þ6H2O
4FeOOHþ½ HS� þ 8Hþ ! 4Fe2þ þ½ SO4

2� þ 6H2O
8FeOOHþ FeSþ 16Hþ ! 9Fe2þ þ SO4

2� þ 12H2O
4Fe(OH)3þ½ CH4þ8Hþ!4Fe2þþ½ CO2þ11H2O

ones in marine sediments. Example free energy calculations are given in Burdige (2012).

. Model Redfield ratios for x, y, and z are typically taken as 106, 16, and 1

2y)O2!xCO2þ (xþy)H2OþyHNO3þ zH3PO4

4xNO3
� ! xCO2 þ 3xH2Oþ 4xHCO3

� þ 2xN2 þ 5yNH3 þ 5zH3PO4

xMnO2 sð Þ þ 3xCO2 þ xH2O ! 2xMn2þ þ 4xHCO3
� þ yNH3 þ zH3PO4

xFe OHð Þ3 þ 7xCO2 ! 4xFe2þ þ 8xHCO3
� þ 3xH2Oþ yNH3 þ zH3PO4

xSO4
2� ! xH2Sþ 2xHCO3

� þ 2yNH3 þ 2zH3PO4

CH4þ x/2CO2þyNH3þ zH3PO4

nly speciate to NH4
þ, HPO4

2�, and HS�, affecting carbonate speciation, carbonate

tion, (2014), vol. 8, pp. 293-334 
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8.11.2.1.2 Pore water solutes as reaction indicators
As is evident from the preceding examples, many of the early

diagenetic reactions taking place in sediments involve both

dissolved and particulate reactants and products. Because of

the relative mass relations of solutions and solids and respec-

tive sensitivities of analysis, solute compositions can be

extremely sensitive indicators of reactions. The change in con-

centration in solution, DC (mass cm�3 pore water), corre-

sponding to a change in solid mass concentration, DĈ
(mass g�1), is given by

DC ¼ DĈrs
1� ’

’

� �
[1]

where ’¼ saturated porosity (ratio of pore solution volume to

total sediment volume) and rs¼particle density (g cm�3 solid

particle volume).

For a typical porosity and particle density in surface sedi-

ment of �0.8 and 2.6 gcm�3, a readily detectable change in

solution concentration of 1 mM (mM¼millimole Liter�1 pore

water) for dissolved HCO3
� corresponds to a mass loss of

organic C (Corg) or inorganic C (Cinorg) of �0.0024% weight

solids, which would be undetectable by standard analytical

methods. Thus, pore water compositions can reflect minute

changes in solids and solution–solid interactions, and their

analysis and distributions are often emphasized in the exami-

nation of early diagenetic processes. In addition, solution com-

positions usually dictate mineral stabilities, reactivities, and

dissolution–reprecipitation processes, and, as illustrated sub-

sequently, mass transport and redistribution within deposits

usually take place dominantly through fluids.

 

8.11.2.2 Reaction Rates and Kinetics

The rates of diagenetic reactions determine in part the potential

for a particular energetically favorable reaction or set of reac-

tions to be expressed in deposits. Reactions with extremely

slow or rapid rates are of little consequence for sediment

composition during early diagenesis. The former may be

important at great depth, and the latter restricted to a vanish-

ingly thin zone at the sediment surface where reaction products

are not retained or effectively define a boundary condition.

Reaction kinetics and specific relationships between reactants

also determine the response of reactions to particular sedimen-

tary transport regimes, as outlined in the succeeding text. In the

case of redox reactions associated with organic matter decom-

position, a commonly assumed general kinetic form relating

organic matter reductant and oxidants is (Boudreau, 1997;

Burdige, 2006; Paul and van Veen, 1978; Van Cappellen and

Gaillard, 1996)

dĈr

dt
¼ �kiĈr

Oxið Þ
KOx, i þ Oxið Þð Þ Inij [2]

where Ĉr is the concentration of reactive organic carbon (often

designated as Ĝ), t is the time, ki is the reaction rate coefficient

for oxidant i, Kox,i is the reaction half-saturation constant for

oxidant i, and Inij represents the metabolic inhibition of oxi-

dant i by all other oxidants j. The stoichiometries of reactions

relate Ĉr and oxidants as a function of time (Tables 1 and 3).

When multiple oxidants are present, the inhibition function
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allows for continuous transition between successive, energeti-

cally favorable oxidants as concentrations are depleted. An

inhibition function can also be written to represent the nega-

tive effect of metabolite buildup (e.g., H2S and NH4
þ) on

microbial communities (Bailey and Ollis, 1986; Humphrey,

1972; Van Cappellen et al., 1993). These functions may have a

form such as

Inij ¼ 1

1þ Cj

Kj

[3]

where Kj is an inhibition constant for solute Cj on solute Ci.

The hyperbolic kinetics of eqn [2] can be substantially

simplified in practice to more practically useful forms appro-

priate to particular reactants, conditions, and regions of

deposits. Within a distinct zone or a deposit dominated by a

given redox reaction, the inhibition function (eqn [3]) can be

discarded. A reactant concentration may also be in excess rel-

ative to the half-saturation constant, Km,i, allowing further

simplification to a zeroth order dependence in that reactant.

For example, in the case of SO4
2� reduction, Km, SO4

2� for

SO4
2�-reducing bacteria is in the range of �0.1–0.3 mM

(Habicht et al., 2002; Pallud and Van Cappellen, 2006).

Because seawater SO4
2� is �28 mM, the rate of SO4

2� reduc-

tion is effectively zeroth order in SO4
2� concentration (i.e.,

[SO4
2�]/(Km, SO4

2� þ [SO4
2�])�1), and its reduction rate is

thus dependent largely on the reactivity and quantity of organic

matter reductant over extensive regions of marine deposits

(Berner, 1964; Boudreau and Westrich, 1984; Goldhaber,

2003). Similarly, if oxidant concentrations are much lower

than Km,NO3� , such as often characterizes zones of NO3
� reduc-

tion (denitrification) in surface sediments, then NO3
� reaction

kinetics are effectively first order with respect to NO3
� concen-

tration, and its reduction rate otherwise determined by the

availability and reactivity of organic matter (e.g., Billen,

1982). As illustrated subsequently, when concentration distri-

butions within deposits are at steady state, it is not necessary to

know detailed kinetic relationships in order to estimate the

magnitude of net reaction rates.

Organic carbon (Corg) reactivity is determined by inherent

properties of particular compound groups (molecular struc-

ture), physical–chemical associations (organic–mineral com-

plexes), and conditional environmental factors, including

oxygen availability, redox oscillation, and metabolite buildup.

Oxygen availability (exposure time) plays a particularly impor-

tant role for the decomposition of relatively refractory compo-

nents (Emerson and Hedges, 2003; Hedges et al., 1999; Hulthe

et al., 1998; Kristensen and Holmer, 2001). Despite the poten-

tial for complex controls, phenomenologically, the apparent

reactivity, k, of bulk sedimentary organic matter varies regularly

as 1/t, where t represents time since the initial synthesis of an

organic component (10�3 < t < 106 yr) (Middelburg, 1989;

Middelburg et al., 1993). The value of k changes during decom-

positionprogressivelywith time, rangingovermore than8orders

of magnitude: from�102–103 per year for recently formed algal

biomass to 10�7 per year for deeply buried, residual deposits

millions of years old (Figure 3; Middelburg et al., 1993).

Because sediments typically reflect mixtures of material

from varied sources with different ages, for example, reworked

ancient rock debris and recently formed or actively forming
n, (2014), vol. 8, pp. 293-334 



10−4 10−2 100 102 104 106
10−8

10−6

10−4

10−2

100

102

104

R
ea

ct
iv

ity
 (y

ea
r−1

) 

Observational time window (year)

Sediment traps
Experiments
Sediment cores
Power law

Photic zone

Kerogen, oil, gas
reservoirs

Deep
biosphere

Bioturbation
zone

Accumulating
sediment

1000

100

10

0.1

Meters below sediment surface

CH2O CO2Deep
ocean

water column

CO2, CH4

Figure 3 The reactivity of sedimentary organic matter, and thus the intensity of coupled diagenetic processes (Figure 1(a)), decreases with time after
initial biogenic synthesis and with progressive stages of decomposition. Estimates of reactivity derived from both experimental measurements and
diagenetic modeling, based largely on regime (a) of Figure 2, follow the power law relation k¼0.21t�0.985 per year, where k is a first-order kinetic
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(2007) Burial at sea. Science 316: 1294–1295; Middelburg JJ, Vlug T, and Vandernat F (1993) Organic-matter mineralization in marine systems. Global
Planetary Change 8: 47–58.
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biomass, surface deposits usually contain a wide spectrum of

organic materials having different ages and reactivities (Blair

and Aller, 2012). Thus, the reactivity of bulk sedimentary

organic matter is most accurately conceptualized and quanti-

fied as a weighted average of reactivities corresponding to a

continuum of compositions and degradation states of sedi-

ment components rather than a single k (Boudreau and

Ruddick, 1991). For reasonable assumptions regarding thenature

of the reactivity distribution function, the reactive continuum

model predicts the observed 1/t dependence of the apparent k

observed for bulk sedimentary organic matter (Tarutis, 1993).

The continuum of organic matter reactivities in surface sed-

iments is often approximated by a set of discrete reactivities that

characterize averaged subsets, usually taken as three subpools

(k1, k2, and k3 (k3¼0)), of the bulk organic matter present

(Hales, 2003; Martin and Sayles, 2003; Westrich and Berner,

1984). Heterotrophic synthesis and secondary production of

organic matter accompanies all biologically mediated degrada-

tion, continuously modifying unidirectional changes in reactiv-

ity with time (e.g., eqn [2]), but these synthetic processes are

seldom included in quantitative models of net decomposition

kinetics (Paul and van Veen, 1978). The wide spectrum of

organic debris and differential reactivities in sediments are dem-

onstrated directly by the differences between 14C activities of

bulk sedimentary C and the CO2 (HCO3
�) released into pore

water during early diagenesis, the latter showing far higher 14C

activities than bulk sediment and reflecting preferential biolog-

ical utilization of distinctly younger substrates (Blair and Aller,

2012; Emerson et al., 1987; Martin et al., 2000).
8.11.2.3 Sedimentary Redox Reaction Patterns

The expression of the thermodynamic redox reaction sequence

in sedimentary deposits is dependent on the relative and
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absolute abundance of specific reactants, on reaction rates, and

on transport conditions dictated by the local diagenetic regime.

If all natural oxidants are available in a depositional environ-

ment, sufficient reactive organic matter reductant is supplied,

and sediment accretes regularly upward with time, a distinct

reaction stratigraphy is typically observed with depth

(Figure 4(a)). If specific oxidants are absent or minimal, for

example, minor quantities of Fe oxides in shallow water carbon-

ate deposits or minor SO4
2� at low salinities, the corresponding

reaction zone is absent or minimized. Specific terminologies

are used to describe the redox conditions and net reaction

zones. Themost commonly used terms to describe the dominant

redox conditions and corresponding reaction zones are oxic

(O2 present) and anoxic (O2 absent), the demarcation being

defined operationally as regions where microbial populations

can or cannot function effectively as aerobes (the analytical

detection of O2 can be below biologically viable levels). The

anoxic zone is often further subdivided into suboxic (inclusive

of NO3
�, MnO2, and FeOOH reduction), sulfidic (SO4

2� reduc-

tion), and methanic (CO2 reduction) (Berner, 1981; Froelich

et al., 1979). Some investigators prefer the use of the term

postoxic rather than suboxic (Berner, 1981) or abandoning a

group term such as suboxic altogether and defining only indi-

vidual reactant or product zones, for example, nitrogenous

(NO3
� $ N2), manganous (MnO2 $ Mn2þ), and ferruginous

(FeOOH$ Fe2þ) (Canfield and Thamdrup, 2009; Emerson and

Hedges, 2003). Because the compositional expressions of the

redox reactions associated with NO3
�, MnO2, and FeOOH

reduction can be (1) individually distinctive, or (2) present but

subdued (e.g., Fe2þ product undetectable in solution but

adsorbed to solid and nitrification–denitrification occurring

but not expressed by obvious net NO3
� production or analyti-

cally detectable N2), or (3) overlapping and very difficult to

resolve spatially in reductant-rich or unsteady shallow water
tion, (2014), vol. 8, pp. 293-334 
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Figure 4 (a) Classic general redox reaction zonation with depth and time in steadily accreting sedimentary deposits (as per Figure 2(a)). Relative zonal
depth scaling depends on absolute and relative fluxes of oxidants and reductants. Terminology applied to individual zones is indicated (Adapted
from Aller, 1982b; Berner, 1980). (b) Unsteady redox succession and diagenetic ingrowth sequence in the surface mobile zone following a reoxidation–
exchange event (as per Figure 2(c)). Duration of individual redox stages is largely a function of oxidant and reactive reductant abundance (entrainment)
following disturbance. Suboxic conditions often dominate the mobile zone for extended periods (after Aller, 2004). (c) Characteristic redox reaction
scaling associated with oxygenated cylindrical biogenic burrow structures. (d) Redox reaction patterns are a function of burrow packing patterns
and characteristic structure scales Lr1 (burrow radius), Lr2 (burrow spacing), and LB (burrow length). (e) Ellipsoidal (spherical) redox microenvironments
associated with fecal pellet or aggregate formation may be initially anoxic and embedded in an otherwise oxic background. (f) Unsteady redox
reaction distributions, such as (e) transition through multiple stages with time and progressive oxidation (reactions as in Table 2).
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and hemipelagic deposits, the term suboxic is retained here to

describe the set of redox conditions that are anoxic, nonsulfidic,

and nonmethanic and in which any or all of the oxidants NO3
�

and Fe–Mn oxides are subject to preferential reduction, and the

reactions of which dominate diagenetic properties.

Redox reaction zones neednot be expressed in a strictly vertical

sequence within deposits. Major sedimentary examples are

mobilemuds that are commonly found in energetic topset regions

of clinoform deltas or inmost river channels, the surface zones of

which behave as episodically mixed batch reactors (Figure 2(c)).

In these cases, the reaction sequence takes place with time after

physical reworking and reoxidationof a distinct layer of sediment,

which overlies a stable layer unconformably from both a deposi-

tional and diagenetic perspective (Figure 4(b)). The redox reac-

tion sequence within the reworked layer can occur multiple times

depending on the frequency of reworking. Macrofaunal bioturba-

tion is absent in these systems and reworked sediment behaves

as a microbial reactor (Aller et al., 2010). The length of time

during which particular reaction conditions dominate depends

on the relative abundance of oxidants and reductants. For

example, the relatively abundant highly reactive FeOOH

(�300–400 mmol g�1) often present in tropical deltaic deposits,

whose sources are well-weathered terrain, promotes lengthy

periods (0.5–1 year) of Fe reduction following reworking, expo-

sure, and reoxidation events (Aller, 2004; Aller et al., 2004b).

When the frequency of disturbance and oxidant regeneration

match the length of time a particular oxidant is dominant, sedi-

ment can be effectively poised in a single dominant suboxic redox

state (e.g., Fe reduction) despite abundant reactive reductant.

If reworking ceases for an extended period and residual reductant

is sufficiently abundant, the deposit eventually transitions to the

vertically expressed sequence characteristic of steady sedimenta-

tion and the surface boundary condition (e.g., Figure 4(a)).

In less energetic sedimentary environments, the macrofaunal

burrows that typically permeate the bioturbated zone are peri-

odically irrigated with oxygenated overlying water (Kristensen

and Kostka, 2005). These irrigated biogenic structures generate a

complex pattern of redox reactions centered around oxic micro-

environments embedded in an otherwise anoxic deposit. Many

burrows or tubes are cylindrical or approximations thereof and a

cylindrical distribution of redox zones tends to form around

them. The radial scaling of these zones depends on the relative

abundance of reactants in the deposits within which burrows or

tubes are formed and irrigated (Figure 4(c)). Additionally, the

reaction zonation has scaling characteristic of the fauna that

create structures and is typically superimposed on the overall

vertical redox stratigraphy. Reaction scaling and coupling

between reaction zones (e.g., reactions per Table 2) is further

dependent on population densities and microenvironment

packing distributions. Redox zones can meld in various config-

urations as burrow structures become closer or farther apart

within a deposit (Figure 4(d)). Thus, it is possible in a biotur-

bated deposit to have multiple reaction patterns and net bal-

ances of reactions, for example, nitrification–denitrification or

SO4
2� reduction, dominating laterally within different patches of

faunal sizes and abundances in both space and time.

Spherical, ellipsoidal, or irregular reaction geometries are also

commonly present in deposits, particularly at scales typical of

biogenic fecal material or sediment aggregates and flocs (mm)

(Figure 4(e)). Suchmicroenvironmentsmay be sites of enhanced
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reaction rates because of elevated reductant content and be

embedded as transient but continuously renewed features in a

more oxidizing redox zone (Figure 4(f); Jahnke, 1985; Jorgensen,

1977). The presence and scaling of such microenvironments can

be directly demonstrated using planar optical imaging sensors,

which resolve small-scale hotspots of remineralization, for exam-

ple, O2 distributions or exoenzyme activity (Cao et al., 2011;

Glud, 2008); various forms of equilibration probes, which reveal

equivalent reaction heterogeneity (Stockdale et al., 2009); and in

preserved patterns of authigenic minerals where aggregates are

centers of accumulated reaction products (e.g., Cole, 1985; Hein

and Griggs, 1972; Hein et al., 1979).

8.11.2.3.1 Redox oscillation
Although much of the theory of redox reactions and diagenetic

processes centers on concepts of stable oxic and anoxic condi-

tions and respective diagenetic behavior, it should be obvious

from previous examples that redox patterns in surface deposits

can be highly variable and dynamic over a wide range of spatial

and temporal scales, particularly in geometrically structured bio-

turbated deposits (e.g., Aller, 1994a; Forster and Graf, 1992;

Kristensen and Kostka, 2005) but also in highly dynamic fluid-

izedmudenvironments (e.g., Aller, 2004). A volumeof sediment

may be subject to multiple successive redox conditions

which oscillate between oxic and anoxic, allowing for a repetitive

spectrum and variable dwell times of redox reactions and reac-

tion intermediates. This oscillating condition can itself be

considered a biogeochemical state or end-member (Aller,

1994a; Volkenborn et al., 2010, 2012). The development of

optical imaging sensors (planar optodes; Glud et al., 1996) has

allowed the direct visual documentation of such oscillations in

two spatial dimensions and time and the quantification of the

probability distributions of different redox conditions (Figure 5;

Volkenborn et al., 2010, 2012). In addition to the introduction

of O2 into sediments by bioirrigation and physical ventilation of

permeable sediments, the direct injection into overlying water of

plumes of anoxic or low-O2 water from burrows or more diffuse

advective flow-through anoxic sediments results in small-scale

redox oscillations and excursions in the bottom water boundary

layer (Figure 5(c); Huettel et al., 1998; Volkenborn et al., 2010).

Oxygen-driven redox oscillations also interact closely with and

modify coupled sedimentary redox processes, such as denitri-

fication (Gilbert et al., 2013) and the degradation pathways

of specific compounds, such as lipids (Sun et al., 2002).

Understanding these fluctuating reaction patterns, reaction

probabilities, dwell times within individual redox states, and

repetition patterns is a critical part of understanding processes

that control microbial diversity and activity, the ultimate

preservation of organic matter, and the burial of authigenic

minerals.

8.11.2.3.2 Microenvironmental heterogeneity
The microenvironmental heterogeneity generated by physical

disturbance or by biogenic structures within sediment can dra-

matically affect compositional patterns and diagenetic reaction

distributions. Biogenic heterogeneity is time-dependent and

characterized by multiple scales and geometries dictated by the

life habits, feeding types, sizes and abundances of macrofauna,

the interactive response of microbes to transport structure,

and variously coupled reactions. For example, two-dimensional
tion, (2014), vol. 8, pp. 293-334 
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optical imaging sensors for pH, an integrative master reaction

variable, reveal the complex spatial and temporal patterns of

sedimentary protonic reactions (e.g., oxidation–reduction and

carbonate dissolution) in response to the formation, irrigation,

and maintenance of burrows (Figure 6; Fan et al., 2011; Stahl

et al., 2006; Zhu et al., 2006). Complex reaction rate patterns are

rapidly generated by benthic community activities in deposits

(e.g., SO4
2� reduction; Bertics and Ziebis, 2010). Under these

heterogeneous structural conditions, it is possible to have not

only a spectrum of redox reactions but also opposing reactions,

such as the dissolution and precipitation of CaCO3 in close

proximity (millimeter to centimeter scales) within the same

vertical depth interval. These specific microenvironmental,

four-dimensional redox reaction patterns in both space and

time are also factors controlling net isotopic fractionations dur-

ing coupled redox reactions, such as nitrification–denitrification

(e.g., Brandes and Devol, 1995).  

 
 

8.11.3 Diagenetic Transport Processes

8.11.3.1 Diffusive Transport

The consumption or production of solutes and particulate

components within sediments, or unsteady changes in bound-

ary conditions at the surface of deposits, generates gradients in

 
 

Treatise on Geochemistry, Second Editio

 

concentrations (activities). These concentration gradients drive

mass flow from regions of high to low chemical potential

through the process of diffusion. The diffusive flux, JD, which

results from chemical potential gradients of a solute, can be

reasonably approximated along one dimension in sediments

by a form of Fick’s first law:

JD ¼ �’Ds
@C

@z

� �
[4]

where Ds¼whole sediment diffusion coefficient (area/time),

C¼concentration (mass/volume solution), and z¼space coor-

dinate (length).

In porous media, such as sediments, the molecular diffu-

sion coefficient in free solution, D, is modified by a pore

geometry correction factor, usually represented as the square

of the tortuosity, y, to define Ds¼D/y2. The value of y2 is �1

and is determined in practice from empirical relationships with

’, such as y2�1/’2 for muds, or y2�1�Ln(’2), or by analogy

with electrical resistivity, y2¼’F, where F ¼ formation resistiv-

ity factor when pore solutions are relatively good conductors

(Andrews and Bennett, 1981; Boudreau, 1997). In multicom-

ponent solutions, Ds is a tensor; however, for most early dia-

genetic applications for minor solutes in high ionic strength

seawater, off-diagonal terms are ignored (Boudreau, 1997; Van

Cappellen and Gaillard, 1996).
n, (2014), vol. 8, pp. 293-334 
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Amajor use of eqn [4] is in the estimation and prediction of

diffusive solute fluxes into and out of sediment from measure-

ments of pore water concentration gradients in the vertical

dimension at the sediment–water interface. A second major

application is as the basis for diffusive mass balance in the

formulation of Fick’s second law and general diagenetic

transport–reaction models.

8.11.3.2 Advective Transport

Advection of pore fluids and solids occurs as sediment accretes

upward or pressure gradients are otherwise imposed. The sim-

plest case in this regard is a steady, unidirectional sedimenta-

tion rate and no compaction in one dimension (Berner, 1964).

These approximations are often remarkably good over specific

depth intervals in a deposit, particularly below the zones

of bioturbation, physical remobilization, or impressed flow
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(e.g., Figure 2(a), 2(c), and 2(d)). The vertical advective flux

of a solute, JA, in this simplified case is given by

JA ¼ ’oC [5]

where o¼ sediment accumulation rate (length/time).

In the absence of compaction or impressed flow, fluids and

solids advect at the same rate (’¼constant). When compaction

takes place, fluids and solids are differentially transported at

depth-dependent rates as porosity decreases, often with a func-

tional dependence of the form ’(z)¼’0 exp(�bz)þ’1, where

’0 and ’1 are constants over finite depth intervals. When sedi-

ments are permeable, however, such as well-sorted sands, pore

fluids can respond to imposed pressure gradients and advect

pore water independently of solids at a rate, n, completely

decoupled from sediment accumulation or compaction

(Huettel and Webster, 2001). The advection of fluids through

porous deposits also results in dispersion, a process not normally

incorporated into diagenetic models because of the traditional

emphasis on low-permeability mud systems (Bear, 1972).
8.11.4 Diagenetic Transport–Reaction Models

8.11.4.1 General Mass Balance Relations and Reference
Frames

Diagenetic transport–reaction models are utilized for a range

of purposes, including the quantification of mass fluxes from

compositional patterns, relating fluxes and reaction patterns to

specific diagenetic regimes, predictive modeling given specific

boundary and reaction conditions, and for inverse modeling,

for example, inferring governing reaction rates, transport rates,

or boundary conditions from compositional distributions

(Berner, 1980; Boudreau, 1997; Burdige, 2006; Schulz, 2006;

Van Cappellen et al., 1993). The mass balances dictated by a

given set of transport–reaction processes in sediments are com-

bined in model equations for solutes and particles of the

general form

@’C

@t
¼ �HJ þ

X
’R [6a] solute

@ 1� ’ð ÞĈ
@t

¼ �HĴ þ
X

1� ’ð ÞR̂ [6b] solid

where C, Ĉ ¼ concentration of solute or particle property

respectively, t¼ time, J, Ĵ ¼ flux of solute or particle solid

property (e.g., J¼ JDþ JA), R, R̂ ¼ reactions affecting solute or

particle solid property, H ¼ gradient operator in respective

coordinate system, and S ¼ summation operator over all reac-

tions affecting species i.

These equations are readily written but in practice require

numerous assumptions and approximations to allow evalua-

tion, application, and reasonable interpretation. It is necessary

to thoroughly consider the diagenetic regime and time–space

scales within which a model is formulated, and it is in this

context that application of mathematical concepts must be

tempered by an understanding of environmental processes

and a focus on the primary goal of a model. In the simplest

traditional diagenetic application, model goals are centered on

quantifying average properties as a function of vertical depth in

a deposit and on the overall mass fluxes associated with
tion, (2014), vol. 8, pp. 293-334 
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diagenetic alteration (e.g., Berner, 1964; Burdige, 2006; Schulz,

2006). The scale of lateral variation is assumed to be isotropic

and small relative to vertical variation. In this case, model

equations are evaluated within a one-dimensional coordinate

system, the origin of which is fixed at the sediment–water

interface with positive axis directed into the deposit. Taking a

spatial coordinate, z, the general equations then become

@’C z; tð Þ
qt

¼ � @

qz
J z; tð Þ þ

X
’R z; tð Þ [7a] solute

@ 1� ’ð ÞĈ z; tð Þ
@t

¼ � @

@z
Ĵ z; tð Þ þ

X
1� ’ð ÞR̂ z; tð Þ [7b] solid

In complex diffusion–reaction geometries such as charac-

terize the bioturbated zone of sediments, it may be appropriate

to consider alternative coordinate systems. For example, appli-

cation of the mass balances of eqn [7a] in a three-dimensional

cylindrical coordinate system centered on individual macro-

faunal burrow microenvironments can accurately reproduce

averaged pore water distributions, simulate three-dimensional

variability, and predict flux relations in bioirrigated deposits

(Aller, 1980b, 2001). The characteristic scaling of the model

microenvironments is determined by benthic community pop-

ulation density, burrowing depth, and the size distribution of

individuals within a deposit (Figure 4(c) and 4(d)).

 

8.11.4.2 Simplification of Diagenetic Models

For a minor solute, Ci, in seawater, it is normal to assume that

diffusive transport coupling between solutes is minimal

(allowing for a single Di) and to ignore compaction and

impressed flow (low permeability) over a modeled interval,

giving from eqns [4]–[7]:

@Ci z; tð Þ
@t

¼ � @

@z
�Di

@Ci

@x
þ oCi

� �
þ
X

R z; tð Þ [8a] solute

Similarly, for a particle-associated solid component:

@Ĉ z; tð Þ
@t

¼ � @

@z
�DB

@Ĉi

@z
þ oĈi

 !
þ
X

R̂ z; tð Þ [8b] solid

In this case, particle transport resulting from the bioturba-

tion activities of benthic communities is represented by a

particle mixing coefficient, DB, analogous, when temporally

and spatially averaged, to a diffusion process (Boudreau,

1986; Meysman et al., 2008). The assumption of constant

porosity in this context avoids the problem of determining

whether particle mixing fluxes occur with respect to solid

mass or whole sediment volume, that is, where the factor

(1�’) should be placed in the diffusive formulation (inter-

and intraphase mixing; Boudreau, 1997). DB can be strongly

depth-dependent but is often taken as constant over a finite

interval of interest. DB also varies as a function of depositional

environment, for example, with food supply to bottom fauna,

and in general decreases with bathymetric depth in the ocean

(Boudreau, 1994; Lecroart et al., 2010; Tromp et al., 1995)

(Figure 7(b)). Alternative representations of particle mixing

may be necessary depending on the time and space scales

considered (e.g., details of sampling scheme). For example,

specific particle exchange functions, which describe the
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movement of particles between regions within the deposit,

can be defined and represent a class of transport model termed

‘nonlocal’ (as opposed to the ‘local’ transport steps character-

istic of diffusion). These nonlocal models for both particles

and solutes have a source–sink form, mathematically similar to

a first-order reaction term, and depending on application may

require considerable information on the exact scaling and style

of mixing and fluid transport phenomena within deposits

(Boudreau and Imboden, 1987; Emerson et al., 1984; Martin

and Banta, 1992; Meysman et al., 2003).
8.11.4.2.1 Characteristic scaling and steady state
It is often possible to further simplify and eliminate diagenetic

model terms based on their relative contributions to fluid

or solid property distributions over particular temporal and

spatial scales. For example, a basis for simplification can be

made by considering the relative values of characteristic time-

scales, tdif, tad, and trx, for diffusion, advection, and reaction

processes, respectively, that correspond to a length scale of

interest, L :

tdif ¼ L2

D
; tad ¼ L

o
; trx1 ¼

1

k
[9]

In this illustrative case, trx1 is taken for a first-order kinetic

reaction having reaction constant k. The ratio tdif/tad is the Peclet
number, Pe, which provides guidance as to the relative domi-

nance of diffusive or advective transport terms over particular

scale lengths. In regions near the sediment–water interface, for

example, with L¼10 cma vertical length scale and a typical range

of sediment accumulation rates ofo¼0.0001–1 cm per year and

solute diffusion Ds¼100–400 cm2 per year, Pe is �1, demon-

strating that the sediment accumulation advective term is usually

slow relative to diffusion and can be dropped for most purposes

in models of pore water solutes focused on that zone. The ratios

tdif/trx1 or tad/trx1 are forms of Damköhler numbers (Da) and

provide a means of determining the relative importance of trans-

portmodes or reaction in controlling the distributionof a reactive

substance over the scale L. For example, if over a layer of thickness

L a particle-associated radiotracer is mixed diffusively at a rateDB

and used to define a t̂dif and the corresponding first-order radio-

active decay constant, l, used to define the reaction timescale

t̂rx1 , then the layer is homogeneously mixed with respect to the

tracer when t̂dif
t̂rx1

� 1. Conversely, if t̂dif
t̂rx1

� 1, the tracer decays

before reaching depth L, and for mathematical purposes, the

lower boundary can be assumed to approach z!1, that is,

with respect to processes controlling the tracer, the zone can be

modeled as a semi-infinite body.

A primary assumption of most practical applications of

diagenetic models is that boundary conditions and internal

transport–reaction balances are steady state. Steady state is

often a very reasonable assumption because sampling scales

and the particular use and context of a model are such that it is

valid, although for other time and space scales it might not be

(Lasaga and Holland, 1976; see subsequent Section 8.11.5.5).

The steady-state assumption eliminates the time-dependent

terms in [8a] and [8b] @Ci z;tð Þ
@ ¼ 0; @Ĉ z;tð Þ

@t ¼ 0
� �

and permits

immediate estimates of either net reaction rates or transport

directly from measured concentration distributions. Although

it is not possible to infer reaction kinetics or functional
n, (2014), vol. 8, pp. 293-334 
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Figure 7 Particle transport processes are major controls on reactant delivery and diagenetic reaction patterns. (a) Net sediment accumulation (particle
advection) varies by �6 orders of magnitude as a function of bathymetric depth in the ocean (square data symbols from synthesis of Soetaert et al.
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variable at any given depth. The increasing discrepancy between 234Th- and 210Pb-derived rates with increasing bathymetric depth reflects deviations
from the assumptions of diffusive mixing models when mixing events are infrequent (Boudreau, 1986; Lecroart et al., 2010; Meysman et al., 2008).

Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes 307 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Author's personal copy
dependences in this way, if the transport conditions are known

(e.g., diffusion coefficient and sedimentation rate), net reac-

tion magnitudes, and thus integrated fluxes, are readily

obtained by simply differentiating an optimized functional fit

to the measured C(z) or Ĉ zð Þ distributions (e.g., Berg et al.,

1998; Goldhaber et al., 1977). Similarly, if reactions are known

(e.g., first-order radioactive decay), transport rates, such as

sediment accumulation or biogenic nonlocal transport, can

be estimated, and in fact, the vast majority of sediment accu-

mulation rates are derived from such inverse models (e.g.,

Berner, 1980; Burdige, 2006; Meile et al., 2001).
Treatise on Geochemistry, Second Edi

 

8.11.5 Patterns in Boundary Conditions and
Reaction Balances

8.11.5.1 Spatial Patterns in Sediment Accumulation and
Biogenic Transport

In addition to the modes of internal transport processes

dictated by diagenetic regimes and principles governing overall

reaction sequences, the boundary conditions on sedimentary

deposits, including sediment input patterns, reactive organic

matter input, temperature, salinity, and oxygen content of

overlying water, can vary substantially depending on location
tion, (2014), vol. 8, pp. 293-334 
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and facies within depositional systems, such as within an

estuary, across a deltaic clinoform, or within a major ocean

basin. There are general spatial patterns for many of these

factors that track water depth (Middelburg et al., 1997;

Tromp et al., 1995). For example, average sediment accumula-

tion rates and biological mixing rates decrease generally with

bathymetric depth in ocean basins (Figure 7). These average

patterns and correlations with them are very useful in global

models but tend to obscure major deviations that can be

important as controls on local diagenetic and biogeochemical

cycling, particularly within the dynamic continental shelf

and margin regions where most sediment is processed and

accumulates. Significant variations can occur at any given

depth due to regional oceanographic conditions, such as

increased productivity and delivery of reactive organic matter

from overlying water due to seasonal upwelling or overturn,

permanent or seasonal low O2 in overlying water, or turbidity

currents and pulse inputs due to particular local combinations

of ocean basin physiography, circulation patterns, tectonic

activity, storms, and river sources. In major deltaic systems,

for example, it is not unusual for sediment accumulation

to vary by 3–4 orders of magnitude over a restricted depth

range of 5–100 m (Figure 7(a); Brunskill et al., 2003; Corbett

et al., 2006; Dukat and Kuehl, 1995; Kuehl et al., 1986; Walsh

et al., 2004).
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8.11.5.2 Spatial Patterns in Reactive Corg Delivery and
Magnitudes of Benthic Fluxes

The benthic flux of O2 reflects the availability of reactive

organic matter, the concentration and supply of O2 in the

overlying water, transport processes, such as bioturbation

within the sediment, and benthic community respiration

(Cai and Reimers, 1995; Glud, 2008; Jahnke, 1996). The deliv-

ery of reactive organic matter to the seabed, and thus

the intensity of diagenetic redox reactions, is often closely

coupled with net sediment accumulation, although as noted

previously, such direct coupling is minimized in permeable

sand and mobile mud deposits along continental margins.

One expression of this general correlation is the flux of O2

into the seafloor as a function of bathymetric depth. Oxygen

fluxes vary from �20–100 mmol O2 m
�2 per day at shelf

depths of �10–100 m to �0.1–2 mmol O2 m
�2 per day at

abyssal depths (Figure 8) (Glud, 2008). When O2 boundary

conditions are also taken into account, the magnitude of the

deep-sea O2 flux shows a regular hyperbolic relation with

reactive Corg and O2 in the overlying water (Cai and Reimers,

1995). In shallow waters where sediments interact strongly

with overlying water and the photic zone, benthic O2 fluxes

may correspond to the remineralization of 25–80% of primary

production (Heip et al., 1995; Jahnke, 2004; Middelburg and
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Soetaert, 2004). When little or no storage of reactive Corg or

reduced diagenetic products, such as FeS2, occurs (e.g.,

Figure 1(a)) and after accounting for specific redox reaction

stoichiometries (Tables 1–3), the O2 flux into deposits at

steady state corresponds closely to the total flux of reactive

organic matter that is remineralized (Glud, 2008). Unsteady

boundary and depositional conditions, such as mobile mud

batch reactor behavior (Figure 2(c)), however, can result in

substantial mismatches between instantaneous sediment–

water solute fluxes of O2 and depth-integrated Corg reminera-

lization rates (Aller et al., 1996).

Methods of flux measurement often differ in the estimated

magnitude of benthic solute fluxes, reflecting the interactions

of the diagenetic transport regime with redox reaction distri-

butions within deposits and various assumptions of the mea-

surement techniques. For example, a diffusive O2 flux into a

deposit can be estimated simply using eqn [4] and the vertical

profile of O2 penetration at the upper sediment–water inter-

face. This estimate assumes 1-D transport control and provides

a minimum possible estimate of O2 flux. When labile organic

matter penetrates relatively deeply into deposits (e.g., scale L

�10 cm), O2 fluxes and other solute fluxes associated with

remineralization can be strongly influenced by bioturbation

over the same scale, particularly by bioirrigation, and the pat-

terns of O2 uptake at depth around burrows are not reflected by

concentration gradients at the uppermost sediment–water inter-

face. Thus, the difference between estimates ofO2 flux using 1-D

diffusive transport models based on an interfacial gradient, and

those made from direct measurements of total O2 flux into

deposits, can be used not only to constrain the magnitude of

theO2 flux but also to reveal diagenetic transport processes (e.g.,

bioirrigation) and respiration by macrobenthos (Figure 8).

Because the intensity of macrofaunal bioturbation often

decreases with bathymetric depth and because labile organic

matter tends to be focused into the surface few millimeters of

deposits at the low sediment accumulation rates typical of dee-

per regions, the differences between1-D estimates ofO2 flux and

other methods designed to measure total flux usually become

minimal in the deep sea (Figures 7 and 8) (Glud, 2008).

The most common technique used to measure total solute

fluxes, as opposed to 1-D model-derived fluxes, is to isolate a

portion of the seabed and the immediately overlying water in an

in situ chamber or retrieved core and to follow the initial rates of

change of O2 and other solutes in the enclosed overlying water

(Berelson et al., 1994a; Jahnke, 2004; Pamatmat, 1971; Smith

et al., 2002; Tengberg et al., 2004, 2005). Although incubation

of sediment using benthic chambers in principle provides a

more accurate estimate of solute fluxes than a 1-D transport

model, isolation of the seabed from the natural hydrodynamic

conditions may produce artifacts. Application of eddy correla-

tion boundary layer techniques to measure benthic fluxes is a

recently developed approach that integrates total O2 and other

solute fluxes over a large area of seafloor without enclosures and

minimal perturbation of the hydrodynamic regime (Berg et al.,

2007, 2009; Reimers et al., 2012). Eddy correlation also pro-

vides a means by which to estimate spatially integrated benthic

fluxes in highly permeable sediments, seagrass meadows, across

highly complex topographies, and over hard grounds where

other techniques result in poor approximations to fluxes or fail

entirely (Berg and Huettel, 2008; Glud et al., 2010). Agreement
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between in situ chambers, microelectrode profiling, and eddy

correlation is excellent in stable mud environments where the

assumptions of both techniques are optimal (Berg et al., 2007,

2009); however, complex hydrodynamic conditions and spatial

heterogeneity may compromise straightforward comparisons

(Reimers et al., 2012).
8.11.5.3 Global Patterns in the Scaling of Redox Reactions

The occurrence and vertical scaling of individual redox reaction

zones is a direct function of the relative rates of reactant supply

at the sediment–water boundary and diagenetic transport con-

ditions (Froelich et al., 1979). For example, if the overlying

water is well oxygenated, the supply of organic reductant is

low, and the sediment accumulation rate is small, the oxic

zone expands and subsequent redox reaction zones may be

absent. This reductant-limited case is typical of abyssal regions

of the deep sea underlying oligotrophic surface waters

(Figure 9). Similarly, when the reductant is abundant and in

excess, oxidants may be limiting and oxic and suboxic regions

contract vertically, as in hemipelagic sediments underlying

productive upwelling waters or shallow water estuarine

deposits (Emerson et al., 1985). The global expression of

these zones in distributions of pore water solute, reactive

metal oxide, and labile organic matter reflects these patterns

of expansion and contraction of dominant redox reactions and

the local diffusion–advection transport conditions (Figures 9

and 10). These global patterns are generally reproduced by

diagenetic models under circumstances of relatively steady

accretion, low permeability, and quiescent conditions typical

of deeper water mud regions (e.g., Figure 2(a) and 2(b);

Archer et al., 2002; Soetaert et al., 1996a; Tromp et al., 1995).

Whereas benthic O2 fluxes are generally measures of overall

mineralization, flux patterns of other constituents can reflect

particular redox reaction balances and remineralization path-

ways within deposits. For example, total N2 fluxes are a mea-

sure of denitrification and anammox activity (Tables 1 and 2;

anammox ¼ anaerobic ammonium oxidation). In Arctic basin

deposits, N2 fluxes decrease with bathymetric depth as does the

contribution to fluxes from macrobenthic bioturbation

(Chang and Devol, 2009). Net fluxes of solutes across the

sediment–water interface do not always reveal reaction path-

ways followed within deposits, as illustrated by the diagenetic

cycles of Fe and Mn. Reoxidation of Mn2þ by O2 and NO3
�,

and of Fe2þ by O2, NO3
�, and Mn2þ, at the sediment–water

interface can obscure intense suboxic recycling internally in

deposits if only net fluxes of Mn2þ and Fe2þ are used as an

indicator of diagenetic reactions (Aller, 1994b; Luther et al.,

1999; Severmann et al., 2010; Sundby, 2006; Thamdrup

et al., 1994).
8.11.5.4 Sedimentary Record of Diagenetic Reaction
Dominance and Balances

Characteristic authigenic mineral suites or elemental (isotopic)

patterns can result from particular reaction balances and dia-

genetic regimes, leaving a record of depositional environment

and diagenetic conditions. Interpretation of specific preserved

compositions entails specific assumptions regarding diagenetic

regime and the nature of source sediments. Most commonly,
tion, (2014), vol. 8, pp. 293-334 
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Figure 2(a) (see also Figure 22 for example of detailed diagenetic
model profiles). (a) Model simulations illustrating that on a global
scale most diagenetic Corg remineralization takes place along
continental margins at bathymetric depths <1 km. (b) Diagenetic
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The roles of SO4

2� reduction and metabolite reoxidation, which
commonly exceed 50% of Corg remineralization and O2 uptake
(Jorgensen and Kasten, 2006), tend to be underestimated in the
shallower regions (Global model calculations from Archer et al.,
2002); see also (Soetaert et al., 1996a; Tromp et al., 1995).
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a steadily accreting deposit is assumed for purposes of recon-

struction (Figure 2(a)). Solid phase diagenetic reaction products

include authigenic oxides, phosphates, carbonates, aluminosil-

icates, and sulfides (e.g., Burdige, 2006; Goldhaber, 2003;

Morse, 2003; Suess, 1979; see also Chapters 9.12 and 10.12).

Formationof aluminosilicates is favored under suboxic or anoxic

nonsulfidic conditions in terrigenous deposits (promoted by

enhanced mobility of Fe2þ and Al3þ and availability of reactive

Si) and specific carbonates, such as siderite form under suboxic

and anoxic nonsulfidic and sulfidic conditions, promoted

by elevated alkalinity and Fe2þ and Mn2þ concentrations, as

discussed briefly in the succeeding text (Section 8.11.8.3).

Diagenetically derived C/S, Fe/S, and Fe/Al relationships

can be particularly useful as indicators of the relative impor-

tance of sulfate reduction in deposits and can also allow infer-

ence of water column oxygenation conditions (Berner and

Raiswell, 1984; Goldhaber, 2003; Lyons and Severmann,

2006; Raiswell and Canfield, 1998; Raiswell et al., 1988).

Elevated Fe/Al (>0.4 wt wt�1) may reflect remobilization and

lateral transport of Fe and its focusing and sequestration into

euxinic facies (Lyons and Severmann, 2006). C/S and Fe/S

relations derive in large part from the overall reactions govern-

ing SO4
2� and Fe reduction, such as

2CH2Oþ SO4
2� þ Fe OHð Þ3 þ CO2

! 1

2
FeS2 þ 3HCO3

� þ 1

2
Fe2þ [10]

There are multiple possible pathways by which pyrite

(FeS2) may actually form (Goldhaber, 2003; Rickard and

Luther, 2007), and eqn [10] is written to illustrate simply the
n, (2014), vol. 8, pp. 293-334 
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close coupling between the availability of reactants Corg, SO4
2�,

and Fe oxides that governs the potential quantity of diagenetic

pyrite. For example, the average C/S ratio in normal marine

shelf deposits is �2.8 (wt wt�1; 7.5 mol mol�1), reflecting the

availability of SO4
2� (implying high salinity) and sufficient

reactive organic reductant to allow a proportional diagenetic

expression of SO4
2� reduction by storage of residual precipitated

sulfide (Berner, 1984). Much lower C/S or poorly correlated C/S

values can indicate anoxic overlying water and much higher

ratios (e.g., C/S > 10–30 wt wt�1) imply low salinity, SO4
2�

limitation (Berner and Raiswell, 1984). However, high C/S

values (low S) similar to those found in freshwater lakes can

also characterize marine mobile mud, batch reactor diagenetic

regimes in subaqueous tropical deltaic deposits, where suboxic

conditions and extensive reoxidation by physical reworking is

the rule (Figure 11). These latter examples illustrate the critical

roles of both boundary and transport conditions in governing

the expression of diagenetic reactions in deposits.

Fe/S relations are usually expressed as the degree of pyriti-

zation (DOP) index, which is defined as the ratio of pyrite

Fe/(total residual reactive Fe þ pyrite Fe) (note: the wt or mol

ratios of Fe forms are identical in this case) (Berner, 1984;

Goldhaber, 2003; Raiswell and Canfield, 1998). Depending on

exactly how reactive Fe is defined, a substantial fraction of

diagenetically reduced, reactive Fe is typically present as FeS2
(pyrite) in steadily accreting marine deposits, and the propor-

tion of reactive Fe tied up as pyrite can approach 90% in the

absence of bioturbation, the latter condition implying anoxic

overlying water. Extensive bioturbation and reoxidation lowers

DOP to <0.4 (Raiswell et al., 1988). Because nonpyrite Fe

may or may not be diagenetically reduced (i.e., present as either
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Fe(III) or Fe(II)), an additional useful index of Fe/S relations

and also suboxic diagenetic reactivity is the Py–Fe(II) index,

defined as pyrite Fe/(total Fe(II) þ pyrite Fe) (Aller and Blair,

1996). Both DOP and Py–Fe(II) are extremely low in tropical

mobile muds (DOP < 0.05; Py–Fe(II) < 0.2), indicating that

suboxic diagenetic pathways and reoxidation processes domi-

nate net diagenetic behavior (Figure 11(a)). These Fe/S and C/S

relationships illustrate that similar outcomes for a particular

property can derive from very different diagenetic conditions

and highlight the need to independently confirm the diagenetic

regime in which deposits were generated when interpreting

compositional indicators.
8.11.5.5 Temporal Patterns in Boundary Conditions
and the Scaling of Reactions

Regular periodic seasonal or episodic variations in temperature,

salinity, overlying water oxygenation, and organic matter deliv-

ery at the seabed can characterize shallow water regions, which

may also be subject to remobilization of deposits by strong

currents, waves, and episodic disturbances, such as storms

(Figure 12). Similarly, deepwater deposits can be subject to

energetic physical conditions (e.g., western boundary current

regions; McCave et al., 2002), sediment reworking, and seasonal

input of surface water-derived organic inputs, although physical

disturbance is far less common in deep than shallow water.

Seasonal increases of organic matter supply or distinct pulses

of organic matter to the seabed are expressed in temporarily

enhanced production of metabolic products, such as the pro-

duction of CO2 (Figure 12). Redox reactions can contract and

expand in dominance in response to rapid changes in organic
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Figure 12 Boundary conditions on sedimentary deposits vary substantially depending on depositional environment. Temperate shallow coastal
systems (<20 m) typically show wide seasonal variations in temperature and salinity, with mean temperatures varying inversely with latitude. In
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reductant supply and also in response to temperature variations,

which increase metabolic activity and relative reaction domi-

nance during warmer relative to colder periods (e.g., Aller,

1980a; Crill and Martens, 1987; Klump and Martens, 1989;

Thamdrup et al., 1994). These time-dependent redox reaction

patterns are readily observed in shallow water systems, in

phenomena, such as seasonal patterns of pore water Mn2þ

(Figure 13; Thamdrup et al., 1994) or metabolic dissolution of

CaCO3 (Green and Aller, 1998, 2001), but they also characterize

any deposit, shallow or deep water, in which distinct variations

in boundary conditions occur (Pope et al., 1996; Sayles et al.,

2001; Smith et al., 1996, 2002).

Variation in the oxygenation of overlying water is a major

seasonal boundary factor in many shallow water systems

where combinations of circulation, temperature, and meta-

bolic activity result in significant changes in oxic–anoxic zona-

tions in sediments and corresponding benthic fluxes of

metabolites and trace metals released from episodically

reduced Fe, Mn oxide carrier phases (e.g., Sholkovitz et al.,

1992). Depending on the frequency, magnitude, and duration

of variable boundary conditions relative to mean values and

net sediment accumulation, such variation may or may not

discernibly affect specific diagenetic properties and the pre-

served record; however, unsteady boundary conditions should

always be explicitly considered as a potential factor before

discounting them (Lasaga and Holland, 1976; Martin and

Bender, 1988; Soetaert et al., 1996b).

A simple analytical diffusion–reaction model with regular

periodic boundary conditions is used here to demonstrate

some of the ways unsteady boundary conditions can affect

distributions of reactive constituents near the sediment surface

and under what general circumstances they can be ignored.

Although the superposition of multiple periodic boundary

functions allows consideration of any arbitrary condition

using Fourier series, complicated, irregular transient, and

exact boundary variations are best simulated and considered

through numerical techniques (Soetaert et al., 1996b). In the

present illustrative cases, let the upper boundary be subject to

either of the regular periodic conditions:

Concentration condition:

C tð Þ ¼ CT0 þ CT1 sin #tð Þ [11a]
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Flux condition :

J tð Þ ¼ J0 þ J1 sin #tð Þ [11b]

By further limiting consideration to length scales near the

boundary where advection is relatively unimportant (Pe�1),

assuming no significant compaction, allowing for diffusive

particle mixing (DB) (or alternatively solute diffusion (Ds)),

and first-order consumption with reaction coefficient k, the

transport–reaction model (eqn [8]) becomes

@C

@t
¼ DB

@2C

@z2
� kC [12]

The analytical solutions with lower boundary condition

(BC) z!1;C!0 and after the initial conditions no longer

influence behavior (periodic part only) are

C ¼ CT0 e
�a0z þ CT1 e

�/1z sin #t � a2zð Þ [13a] [BC 11a]

C ¼ J0
a0DB

e�a0z

þ J1
a1DB

e�/1z sin #t � a2z� ’1ð Þ [13b] [BC 11b]

where

a0 ¼
ffiffiffiffiffiffi
k

DB

s
; a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ #2

p
þ k

2DB

s
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ #2

p
� k

2DB

s
;

’1 ¼ tan�1 a2
a1

These solutions demonstrate that the amplitude of the

propagating boundary signal is damped and that a phase

shift in the periodicity (phase �a2z,or,�a2z�’1) occurs pro-

gressively with depth. Thus, any maximum at the boundary

appears as a smaller amplitude at depth later in time. Critical

factors governing transient behavior within deposits are the

relative magnitudes of reactivity (k), frequency of oscillation

(#), and transport (DB). The greatest impacts of variable

boundary conditions are expected when the characteristic

timescales of the reaction rate and the frequency are similar.

If the component of interest is reactive organic matter, clearly,

the highest reactivity material decomposes near the surface,
n, (2014), vol. 8, pp. 293-334 
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Figure 13 Seasonality in boundary conditions is strongly expressed in diagenetic properties of surface sediment and is progressively damped with
depth in deposits (see eqns [10]–[12] in text). Example: (a) Seasonal variation in dissolved Mn2þ in deposits from Aarhus Bay, Denmark, responds
to variations in temperature (metabolic activity), bioturbation (transport), and input of reactive organic matter (reductant supply) (no data ¼ white
diamond region). (b) Seasonal variation of temperature in Aarhus Bay corresponding to (a) and also demonstrating interannual variability (1990) typical
of shallow water systems. Reproduced from Thamdrup B, Fossing H, and Jorgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal
marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta 58: 5115–5129.
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and rates (e.g., solute fluxes derived from decomposition) track

the boundary input closely in time (i.e., fluxes appear approx-

imately steady state with the immediate boundary condition).

In contrast, relatively low-reactivity material decomposes at

depth, and maximum reaction (and thus derived solute fluxes)

can be substantially offset in time from the surface boundary.

This offset may produce a lag in derived benthic solute flux

and alter apparent depth dependence of the reaction if a

steady boundary were assumed. Extremely high frequencies

of boundary variation have minor impact (a1 large; periodic

term! 0) on internal patterns, and only the mean condition is

important in such cases.
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8.11.6 Corg Burial and Preservation: Reactants and
Diagenetic Regime

8.11.6.1 Patterns in Corg Distributions and Particle
Associations

Various combinations of sedimentary Corg sources and reactiv-

ities, transport history, local boundary conditions (e.g., water

column oxygen), and diagenetic regimes (e.g., sedimentary

dynamics) produce a wide range of Corg concentrations and

burial and preservation patterns within the oceans (Figure 14).

Particular sets of conditions characterize different deposi-

tional environments, and the multiple factors governing Corg
tion, (2014), vol. 8, pp. 293-334 
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Figure 14 The delivery of reactive organic matter to the seafloor and diagenetic preservation patterns are reflected in sedimentary Corg concentration
distributions. (a) Global patterns of total sedimentary organic Corg (TOC). (b) Statistical distributions of Corg in spatial samples as a function of
depositional environment (log normal). Reproduced from Seiter K, Hensen C, Schroter E, and Zabel M (2004) Organic carbon content in surface
sediments – Defining regional provinces. Deep-Sea Research Part I 51: 2001–2026.
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burial often correlate. For example, low-oxygen conditions

are commonly found in low-energy systems where physical

and biological reworking of the seabed is also minimal and

unidirectional accretion takes place. Association of Corg with

particle surfaces can result in the preferential physical focus-

ing of Corg into fine-grained deposits, which dominate stor-

age (Premuzic et al., 1982; Trask, 1939). Organic–mineral

complexes that characterize fine-grained mineralogies can

also substantially lower the reactivity of Corg and enhance

burial and preservation (Hedges and Keil, 1995; Mayer,

1994a,b).

The normalization of Corg content to particle surface area

(SA) permits partial resolution of the relative roles of transport

focusing of particles and net reactions in governing Corg distri-

butions and preservation (Figure 15) (Mayer, 1994a,b). Partic-

ulate Corg/SA loading ratios in the range of 0.4–1.0 mg Corg m
�2

are common in river-suspended material and at depth in shelf

sediments (Mayer, 1994a,b). This observation led to the con-

cept that this specific range reflects an asymptotic loading value

characteristic of relatively stable organic–mineral associations

having low reactivity and low availability for further diagenetic

decomposition, that is, it represents a residual reactant back-

ground due largely to the protection of organic material by

minerals (Hedges and Keil, 1995; Mayer, 1994a,b). Although

organic–mineral associations clearly lower reactivity and

affect reactive pool sizes, the fact that relatively depleted Corg/

SA loading <0.4 mg m�2 is commonly found in deltaic

deposits with high sedimentation rates that are frequently

remobilized and reoxygenated, and also in deep-sea deposits

with low sedimentation rates that are exposed to oxygenated

conditions for extended periods, demonstrates both the con-

ditional nature of decomposition and the lack of any absolute

protective mechanisms (Aller and Blair, 2006). Similarly, Corg

supply can exceed decomposition processes and sustain
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preservation of Corg/SA loading >1.0 mg Cm�2 in classes of

high-productivity environments, such as oxygenated (e.g.,

Cape Hatteras; Mayer et al., 2002) or low-oxygen continental

margin regions (e.g., Peru upwelling; Hedges and Keil, 1995),

illustrating that there are multiple stable high Corg loading

states realized in specific sedimentary systems. In addition, it

is known that substantial portions of sedimentary Corg are

present in particle surface associations inconsistent with pro-

tection by minerals (Ransom et al., 1997). Thus, although

globally they do not reflect any one specific protection or

reaction mechanism, loading ratios provide a very useful way

in which to differentiate environmental regions that reflect

normal balances between supply and decomposition regimes

found in many river, estuarine, and shelf environments

(0.4–1.0 mg m�2), balances found in regions of highly effi-

cient net decomposition (0.1–0.4 mg m�2), and balances

found in regions of comparatively inefficient decomposition

relative to supply (>1.0 mg m�2) (Blair and Aller, 2012).

Overall, Corg burial fluxes vary directly with net sediment

accumulation, and the primary sedimentary sinks for Corg

are therefore dominated by the major fine-grained sediment

depocenters associated with river deltas and continental mar-

gins, where �90% of Corg storage occurs within �15–20% of

seafloor area (Berner, 1982; Burdige, 2007; Dunne et al., 2007;

Hedges and Keil, 1995; Liu et al., 2010; Müller and Suess,

1979; Walsh, 1988; Wollast, 1998). The net accumulation

rate of sediment is also a major control on the efficiency of

Corg preservation, which is defined as the fraction of Corg

buried relative to the total Corg flux initially supplied to the

seabed (Canfield, 1993; Henrichs and Reeburgh, 1987). Under

low-energy depositional conditions, high sediment accumula-

tion rates tend to minimize local exposure to O2 and

the multiple impacts of bioturbation on remineralization

(Keil et al., 2004; Tromp et al., 1995).
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Figure 15 Sedimentary Corg contents generally correlate directly with sediment particle surface areas, consistent with dominant location of Corg on
particle surfaces rather than interiors. Bulk sedimentary Corg is therefore determined in part by particle size and sediment segregation processes
(transport sorting). Specific regions of surface loading (mg Corg/SA) on a Corg versus surface area (SA) plot characterize particular net balances between
supply and remineralization reactions in different depositional environments (Hedges and Keil, 1995; Mayer, 1994a,b). Remineralization is inhibited by
organo–mineral complexes (protection) and enhanced by oxygen exposure time (OET) and metabolite exchange. Data from Mayer (1994a,b), Mayer
et al. (2002), Hedges and Keil (1995), Emerson and Hedges (2003), Goñi et al. (2008), Aller and Blair (2006), Aller et al. (2008). Reproduced from Blair
NE and Aller RC (2012) The fate of terrestrial organic carbon in the marine environment. Annual Reviews of Marine Science 4: 401–423.
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Figure 16 The critical roles of O2 and O2 exposure time (OET) as
controls on remineralization and Corg preservation are readily
demonstrated by unsteady diagenetic distributions of organic matter
found in turbidite deposits in the deep sea. Extended exposure of
reworked anoxic sediments to oxygenated overlying water, following
pulsed deposition of turbidites, results in unsteady burn down of
oxidation fronts during hiatal periods and a net loss of Corg (OC) and
organic N ((C/N)a ¼ mole ratio) in the oxidized zone. Remineralization
of Corg during �10 ky of secondary exposure to O2 exceeds that achieved
previously over�140 ky under anoxic conditions. Reproduced from Cowie
GL, Hedges JI, Prahl FG, and de Lance GJ (1995) Elemental and major
biochemical changes across an oxidation front in a relict turbidite: An
oxygen effect. Geochimica et Cosmochimica Acta 59: 33–46.
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8.11.6.2 Corg Preservation: O2, Accumulation Rates, and
Diagenetic Regimes

Although accumulation rate is a major factor governing pres-

ervation, preservation patterns are more nuanced and complex

than a single correlation with net sediment accumulation,

particularly in deltaic environments where the highest sedi-

ment accumulation rates and Corg storage are found. Preserva-

tion is intimately tied to balances between Corg flux, oxygen

exposure time, organic–mineral associations, and sedimentary

dynamics. For example, extended exposure times of sedimen-

tary organic matter to oxygenated conditions, however

achieved, enhance remineralization and minimize the fraction

of Corg, labile or refractory, that is preserved (Hedges and Keil,

1995; Hedges et al., 1999; Hulthe et al., 1998; Keil et al., 2004).

Conditions of low preservation characterize much of the oxy-

genated deep sea, where combinations of relatively low Corg

flux, low sedimentation rate, and oxygenated water promote

extended oxygen exposure in surface deposits and thus low

preservation (Hartnett et al., 1998; Hedges and Keil, 1995).

The critical role of oxygen exposure and the nature of sediment

deposition are particularly evident following pulsed input of

sediment delivered as turbidites into the deep sea. The diffu-

sion of oxygen into turbidite deposits between depositional

events is clearly associated with the progressive burn down of

Corg at downward migrating oxidation fronts, enhanced remi-

neralization of sedimentary Corg, and minimal preservation

(Cowie et al., 1995; Emerson and Hedges, 2003; Prahl et al.,

1989, 1997; Figure 16).
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Remarkably, low Corg preservation diagenetic outcomes

similar to those in the deep sea are also found in energetic

deltaic systems where, despite extremely high Corg fluxes and

sediment accumulation rates, Corg is efficiently remineralized

regardless of the set of initial Corg reactivities supplied from

either terrestrial or marine sources (Figure 17; Blair and Aller,

2012). In these depositional environments, the seabed acts as a

batch sedimentary incinerator in which intense reworking of

deposits promotes repeated episodic exposure to oxygen, reox-

idation of reduced diagenetic products, flushing of metabo-

lites, and incorporation of labile organic matter into the bulk

sedimentary Corg mixture (Figure 2(c); Aller and Blair, 2006;

Aller et al., 2008). This latter condition results in a poorly

understood process referred to as ‘priming’ in which the avail-

ability of labile Corg substrates enhances the decomposition of

otherwise residual refractory organic components (Aller et al.,

1996; Bianchi, 2011; Graf, 1992). When continental shelves

are wide, such as characterize passive tectonic margins during

periods of high sea stand, the residence time of sediment in

these dynamic diagenetic conditions may be 100s–1000s of

years, resulting in highly efficient remineralization of sedimen-

tary organic material of all ages.

The highest Corg preservation efficiencies observed in the

marine environment are found in association with mountain-

ous rivers systems along tectonically active margins. In these

systems, a large proportion of Corg is recycled refractory organic

matter (e.g., kerogen) supplied relatively directly from sedi-

mentary rock sources to the ocean from high-gradient drainage

basins. Rapid delivery to marine sink regions following initial

erosion results in comparatively minimal alteration of organic

material in terrestrial environments, such as floodplains

 

0.0001 0.001 0.01 0.1 1
0

20

40

60

80

100

%
C

or
g 

p
re

se
rv

ed

O 2
-d

ep
let

ion

Norm
al m

arin
e

SMRs

Deltaic 

Net dry sediment accumulation rate (g cm−2 y
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(Komada et al., 2004; Leithold et al., 2006). The bias to the

supply of low reactivity, often ancient material is coupled with

high accumulation rates in regions close to continental sources

and with sediment deposition in relatively quiescent deep-

water sites (narrow continental shelves), the latter minimizing

the role of physical or biogenic reworking and O2 exposure

during transit and burial. This combination of factors tends to

maximize Corg preservation along tectonically active margins

and provides a long-term homeostat for atmospheric O2 (Blair

and Aller, 2012; Blair et al., 2004).

A third major group of high accumulation rate systems

is intermediate in preservation behavior between those of the

mobile mud environments or small mountainous rivers. These

are generally large systems, such as the Ganges–Brahmaputra,

Rhone, and Congo deltas, where sedimentary material incor-

porating both reactive and nonreactive components rapidly

transits into quiescent deep water (Blair and Aller, 2012; Galy

et al., 2007; Rabouille et al., 2009).

Although permeable sand deposits are often sites of intense

remineralization and benthic fluxes, they are not significant

storage sites for organic matter (Burdige, 2007; Jahnke, 2004;

Middelburg and Soetaert, 2004; Walsh, 1988). The typical min-

eralogies of sands (e.g., quartz) preclude the kinds of close

organic matter–mineral interactions and matrix incorporation

found in clays that promote stabilizationoforganicmatter during

decomposition (Goñi et al., 2008; Hedges and Keil, 1995;Mayer,

1994a,b; Ransom et al., 1998). The efficient supply of O2, labile

organic particles, and exchange of metabolites associated with

high permeability and advective pore water flow, combined with

relative lack of protection of organic material by minerals, mini-

mizes burial of residual refractory components, such as kerogen.
10

Extreme accumulation
rates

fluidized muds

ear−1)

Normal marine
Euxinic and semi-euxinic
Low O2 BW
Amazon (marine C)
Amazon (terrestrial C)
Mississippi (marine C)
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Fly-Purari, Gulf of Papua (marine C)
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preserved) is a variable function of net sediment accumulation rate.
riverine Corg concentrations with seabed terrestrial Corg as determined by
ization (e.g., O2 uptake and SCO2 production), burial rates, and isotopic
om Aller, 1998; Aller et al., 2008; Blair et al., 2003, 2010; Canfield, 1994;
2009; Kao et al., 2006; Pastor et al., 2011a,b; Thompson, 2009).
carbon in the marine environment. Annual Reviews of Marine Science 4:
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8.11.7 Carbonate Mineral Dissolution–Alteration–
Preservation

8.11.7.1 Coupling of Redox Reactions and Carbonate
Diagenesis

The array of acids and bases formed during early diagenetic

redox reactions strongly affects the dissolution, recrystalliza-

tion, precipitation, and burial of sedimentary carbonate min-

erals. Thus, redox reaction patterns, transport regimes, and

carbonate mineral diagenesis are very closely tied, spatially

and temporally. As in the case of organic carbon, the avail-

ability, or not, of O2 plays a particularly important but not

exclusive role in governing carbonate mineral diagenetic

behavior. In general, under oxic conditions, the oxidation of

reduced components of sediments, Corg, NH4
þ, Mn2þ, Fe2þ,

and H2S–FeS2, results in acid production (CO2 (H2CO3),

HNO3, and H2SO4) and a tendency toward undersaturation

and dissolution of carbonates focused into the zones of acid

production near the oxic sediment–water interface and sedi-

mentary redoxclines. Under suboxic and fully sulfidic condi-

tions, the reduction of the weak conjugate bases NO3
�,

Mn3þ,4þ oxides, Fe3þ oxides, and SO4
2� results in alkalinity

production and a tendency toward supersaturation and pre-

cipitation of authigenic carbonates at depth. In the case of

SO4
2�, the exact patterns of carbonate saturation states during

progressive stages of SO4
2� reduction depend on the buildup

of H2SþHS� in solution and the availability of reactive Fe to

form Fe sulfides (Morse and Mackenzie, 1990; Walter and

Burton, 1990). When reactive Fe is absent, such as in organic-

rich shallow water carbonate mud deposits, the production

and buildup of H2S relative to carbonate alkalinity can result

in undersaturation of common carbonate minerals during the

initial stages of SO4
2� reduction (DSO4

2��2 mM; Walter and

Burton, 1990).

 

8.11.7.2 Carbonate Mineral Equilibria and Saturation States

Because the carbonate minerals initially present and undergo-

ing reactions in surface deposits are dominated by biogenic

material generated both in the water column by plankton and

by benthic organisms on or in the seabed, the early diagenetic

behaviors of biogenic low-Mg and high-Mg calcites and
Table 4 Solubilities of common carbonate minerals at 25 �C, 1 atma

Phase Formula

Aragonite CaCO3

Calcite CaCO3

Magnesite MgCO3

Magnesian calcites Ca0.94Mg0.06CO3–Ca0.81Mg0.19CO3

Siderite FeCO3

Rhodochrosite MnCO3

Dolomite CaMg(CO3)2
Kutnahorite CaMn(CO3)2

apK0sp is the stoichiometric (apparent) molar solubility product in seawater; pK values are therm
reflects effects of variable crystallinities, grain size, and particle surface alteration (after Jens
bBiogenic Mg calcite stoichiometric ion activity products (Bischoff et al., 1987).
cIndicates estimated value from measured rhodochrosite and calcite stoichiometric solubiliti
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aragonite are critically important globally (Archer, 1996a;

Morse et al., 2006). However, a range of additional Ca-, Mg-,

Mn-, and Fe-rich carbonate minerals are also involved in early

diagenetic reactions, particularly in the upper few centimeters to

decimeters below the sediment surface in organic-rich, nearshore,

and deeper margin deposits (Table 4). The likely diagenetic reac-

tions of carbonates and their rates in sediments are inferred from

pore water compositions, thermodynamic models of mineral

stabilities, and kinetic models of dissolution–precipitation. The

stabilitiesof differentCacarbonateminerals are commonly repre-

sented using dissociation reactions of the form

CaCO3 QCa2þ þ CO3
2�

and

CaxMg1�xCO3 Q xCa2þ þ 1� xð ÞMg2þ þ CO3
2�

Measured apparent or stoichiometric solubilities are used

for most practical considerations in seawater, defined for cal-

cite as

K
0
sp, cal ¼ Ca2þ

� �
CO3

2�� � ¼ Ksp, calc

gT, Ca2þ
� �

gT, CO3
2�

� � [14]

where [Ca2þ], [CO3
2�] ¼ total analytical concentrations at

equilibrium, Ksp,cal ¼ thermodynamic ion activity solubility

constant for calcite at defined T, P, and gT,Ca2þ, gT,CO3
2� ¼ total

activity coefficients of Ca2þ and CO3
2� in seawater.

Similarly, for high-Mg calcite:

K
0
sp, hi�MgCal ¼ Ca2þ

� �x
Mg2þ
� �1�x

CO3
2�� �

[15]

In this latter case, however, there is no unique relationship

to a thermodynamic constant in seawater (Morse et al., 2007).

Thus, the solubilities of high-Mg calcite are usually evaluated

as congruent stoichiometric solubilities and vary directly with

Mg2þ content and biogenic or abiogenic source (Bischoff et al.,

1987; Chave, 1954; Morse et al., 2006, 2007; Walter and

Morse, 1985). High-Mg calcites and aragonites are more solu-

ble than low-Mg calcite (Table 4) and are common constitu-

ents of nearshore deposits where overlying water is often

supersaturated with respect to all biogenic carbonates

(Andersson et al., 2008; Morse, 2003). Except where they are

rapidly delivered by lateral transport from shallower regions,
pK0sp
((mol2 kg�2)x 10�7)

pKsp

6.65 8.30
4.39 8.48

8.04
8.08–8.38b

10.52 (10.43–11.2)
8.49 10.59 (9.47–12.51)

18.15
15.55c 21.81 (19.79–21.81)

odynamic ion activity product solubilities: –log Ksp. The range indicated in parentheses

en et al., 2002; Middelburg et al., 1987; Morse et al., 2007; Mucci, 1991).

es (Aller and Rude, 1988).
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these relatively soluble minerals are virtually absent from deep-

water sediments because of water column undersaturation

below �0.5–1 km and dissolution reactions in both the water

column and seabed. Thus, consideration of deep-sea carbonate

diagenesis is usually restricted to the behavior of low-Mg calcite.

The distribution of metabolic reaction rates, temperature, and

pressure combines to produce a general pattern of Ca carbonate

saturation states in the ocean in which supersaturated surface

waters directly overlie undersaturated oxic sediments or deeper

undersaturated oxic water and sediment, which in turn overlie

supersaturated suboxic–anoxic deposits (Figure 18). Supersatu-

ration in sediments results largely from the production of car-

bonate alkalinity during anaerobic metabolism and, in the case

of Fe and Mn carbonates, from the release to solution of Mn2þ

and Fe2þ during suboxic diagenesis.

The supersaturation of carbonate minerals during early

diagenesis commonly results in the disseminated precipitation

of a wide range of authigenic carbonates. The precipitation of

Ca, Mg carbonate can be expressed through pore water deple-

tions of Ca2þ, Mg2þ, loss of minor constituents of Ca, Mg

carbonates, such as Sr2þ, Mn2þ, Fe2þ, and F�, and stoichiomet-

ric deviations between pore water solutes, for example,

alkalinity/SO4
2� ratios <2 (Eq mol�1) (e.g., Burdige et al.,

2010; Rude and Aller, 1991; Sholkovitz, 1973). Fe2þ and

Mn2þ carbonates also form in zones of suboxic, nonsulfidic

diagenetic conditions where Fe2þ, Mn2þ, and CO3
2� are ele-

vated. Precipitation rates of Fe, Mn carbonates tend to be slower

than Ca, Mg carbonate precipitation, but nevertheless, their

occurrence is widespread (Jensen et al., 2002). Conditions favor-

ing Fe,Mn carbonates are found inorganic carbon-poor deep-sea

deposits a few decimeters below the sediment surface (Arctic); in

unusually Mn- and Fe-rich surface sediments from quiescent

regions, such as the Panama Basin or Baltic Sea; in energetic
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shallow water mobile deltaic muds, such as the Amazon delta,

Gulf of Papua, and Aru Sea; and a few centimeters below the

sediment–water interface in lithogenic estuarine and deltaic

deposits (Aller et al., 2004a; Alongi et al., 2012; Bricker and

Troup, 1975; Holdren et al., 1975; Pedersen and Price, 1982;

Suess, 1979; Zhu et al., 2002). Although these authigenic

minerals can accumulate as distinct nodules, they are often

disseminated throughout deposits or present as overgrowths

on preexisting carbonate debris. If sulfide is present, Fe sulfides

are more stable thermodynamically and form in preference to

Fe carbonates (Garrels and Christ, 1965). Below the zone

of SO4
2� reduction, dolomite may also form, particularly

in organic-rich margin deposits with elevated alkalinities

(e.g., Baker and Burns, 1985; Machel, 2004). These diagenetic

carbonates incorporate metabolic HCO3
� from pore water, the

proportional contribution of which depends on distance from

the sediment–water interface and the local details of the

transport–reaction regime. Authigenic carbonates formedduring

early diagenesis therefore often have relatively light d13C isotopic

compositions (d13C<0) compared to overlying seawater and

biogenic carbonates (Coleman, 1985). In deltaic environments,

authigenic Ca, Mg, Mn, and Fe carbonates can represent a major

fractionof total C burial (�25–30%). In theAmazondelta topset

and downdrift coastal mudbanks, for example, authigenic car-

bonates account for�70% of buried carbonate minerals at total

inorganic C accumulation rates of �5.7 mmol m�2 per day

(Aller et al., 1996; Zhu et al., 2002).
8.11.7.3 Kinetics of Biogenic Carbonate Dissolution
in Sediments

The global distribution of biogenic carbonates reflects balances

between supply, dissolution, and dilution by lithogenic debris,
aturation states

ndersaturated, calcite dissolution

ersaturated, biogenic CaCO3

SWI

netic Ca, Mg, Fe, MnCO3

dersaturated, aragonite dissolution km

cm

eneral spatial composite distribution of supersaturation, undersaturation,
h respect to a wide range of biogenic carbonate minerals and overlie an
. The spatial scaling is determined by material fluxes, thermodynamic
tion conditions). The exact zonations differ between specific minerals and
calcite). Suboxic and anoxic diagenetic reactions typically result in
few centimeters or meters of deposits and the diagenetic precipitation of
–water interface).
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the latter of consequence mainly near the continents

(Figure 19) (Archer, 1996a; Seiter et al., 2004). Although

often emphasized as a deep-sea process because of its role in

determining the global distribution of carbonate compensa-

tion depth, the early diagenetic metabolic dissolution of

biogenic carbonate is ubiquitous. The patterns of carbonate dis-

solution in surficial sedimentary deposits depend strongly on the

diagenetic transport regime, including accumulation rate, parti-

cle bioturbation, and bioirrigation, and the relative reaction

kinetics of carbonate dissolution, organic matter decomposition

(CO2 production) and the reoxidation of reduced metabolites,

and overlying water saturation state. The reoxidation of reduced

metabolites and associated strong acid production is of minor

consequence in regions of low organic flux in the deep sea, but

it is a significant mode of carbonate dissolution in shallow

waters. Carbonate dissolution–precipitation distributions in

surface deposits can be extremely complex, as illustrated by 3-D

distributions of pH observed in bioturbated deposits, which

imply close proximity of undersaturated and supersaturated

microenvironments (Figure 6).

Calcite and aragonite particles undergo dissolution reac-

tions, the rates of which depend on the departure of the con-

tacting solutions from equilibrium saturations. Reaction

kinetics have the general form

RCaCO3
¼ kCaCO3

ĈCaCO3
1� O½ 	n [16]

The reaction rate coefficient, kCaCO3
, is typically expressed in

units of % CaCO3/time (mass CaCO3 dissolved�100/mass
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CaCO3/time) (Keir, 1980). Alternative kinetic expressions are

possible and often desirable depending on particular model

applications (Emerson and Hedges, 2003). When carbonate

particles are dispersed in undersaturated solutions, dissolution

kinetics are high order, with n¼3.5–4 for calcites and arago-

nite, reflecting progressive change in the dominant dissolution

mechanism at particle surfaces as a function of saturation state

(Keir, 1980; Morse et al., 2007; Walter and Morse, 1985).

Under diffusion-dominated sedimentary conditions, dissolu-

tion kinetics can apparently be reasonably approximated by

n¼1 (Boudreau et al., 2010; Hales, 2003; Hales and Emerson,

1997) or 1–2 (Green and Aller, 2001). The reaction rate coef-

ficients are strong functions of particle size (reactive surface

area) and specific compositions and sources (Keir, 1980;

Morse, 1978). Typically, but not always, reaction rate coeffi-

cients in sediments are �10–10 000� lower than those found

in controlled laboratory conditions with relatively uniform

particle sizes and mineralogy (Archer et al., 1989; Berelson

et al., 1994b; Cai et al., 1995; Hales, 2003; Hales and Emerson,

1997; Pfeifer et al., 2002). The values of Ksp
0 (M2) incorporated

in eqn [16] for the biogenic carbonates vary as function of

temperature and pressure, which can be closely approximated

for calcite as a function of pressure (p(z) atm, z ¼ depth) and

mean ocean temperature by

K
0
sp � 4:3513� 10�7 e0:0019585p zð Þ [17]

(Boudreau et al., 2010).
60
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8.11.7.4 Shallow Water Carbonate Dissolution

Shallow marine waters are generally supersaturated with

respect to both calcite and aragonite, with saturations ranging

from Ocal �5.5 and Oarag �3.6 in the tropics (T¼25 �C) to Ocal

�3.7 and Oarag �2.3 in temperate regions (T¼13 �C) to Ocal

�2.6 and Oarag �1.6 at high latitudes (T¼4 �C) (Andersson

et al., 2008). Thus, in subtidal, surficial deposits, the sedimen-

tary carbonate dissolution that occurs is closely tied to diage-

netic metabolic acid production, metabolite reoxidation (e.g.,

sulfide oxidation and nitrification), and bioturbation, all of

which can vary seasonally (Table 5). In temperate zone terrig-

enous estuarine deposits, where biogenic carbonate debris typ-

ically comprises �1–10% by weight of surface sediments, net

carbonate dissolution can be highest during the low tempera-

ture, well-oxygenated winter period, as shown by seasonal

patterns of dissolution in central Long Island Sound, a repre-

sentative temperate estuarine environment (Figure 20). Excess

dissolved Ca2þ concentrations above that expected based on

 

Table 5 Coupled oxidation – carbonate dissolution reactions
common in Corg-rich and bioturbated sediments underlying
oxygenated water

(1) O2 þ CH2Oþ CaCO3 ! Ca2þ þ 2HCO3
�

(2) FeS2 þ 15
	
4 O2 þ 4CaCO3 þ 7=2H2O ! 4Ca2þ þ 4HCO3

�

þ2SO4
2� þ Fe OHð Þ3

(3) FeSþ 9
	
4 O2 þ 2CaCO3 þ 5

	
2H2O ! 2Ca2þ þ 2HCO3

�

þSO4
2� þ Fe OHð Þ3

(4) NH4
þ þ 2O2 þ 2CaCO3 ! NO3

� þ H2Oþ 2HCO3
� þ 2Ca2þ

(5) 2Mn2þ þ O2 þ 4CaCO3 þ 2H2O ! 2MnO2 þ 4Ca2þ þ 4HCO3
�

(6) 2Fe2þ þ O2 þ 4CaCO3 þ 5H2O ! 2Fe OHð Þ3 þ 4Ca2þ þ 4HCO3
�
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Figure 20 Extensive diagenetic dissolution of CaCO3 takes place in estuar
range of 5–15 mmol m�2 per day annual average (Burdige et al., 2010; Gre
year-round but is best expressed in pore water solute distributions during w
undersaturation is promoted by low temperatures, and net oxidation of sed
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(model eqn [4] in text). Reproduced from Green MA and Aller RC (1998) Se
Relation to spring phytoplankton bloom and temperature. Journal of Marine
diagenesis of calcium carbonate in Long Island Sound sediments: Benthic f
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pore water Cl� (salinity) track the degree of carbonate under-

saturation during winter, when bioirrigation transport is min-

imal. Lack of strong biotransport allows reactions to be readily

expressed in patterns of buildup or depletion of solute concen-

trations. Minor element components of carbonates, Sr2þ (ara-

gonite) and F� (calcite, aragonite), are also released into pore

water and move into overlying water as carbonates dissolve

(Figure 20(b)). The rapid deposition of organic matter during

the seasonal spring bloom and the warming of overlying water

bring the period of obvious diagenetic carbonate dissolution to

an end, as anaerobic metabolism becomes dominant and bio-

turbation (bioirrigation) increases. Increased biogenic trans-

port and biodeposition of carbonate (e.g., foraminifera and

bivalves) in particular can mask the expression of carbonate

dissolution, which occurs to some extent during all seasons in

these types of deposits.

Much of the O2 consumption by sediments during the

colder periods in temperate deposits is due to reoxidation of

Fe sulfides produced during previous warmer seasons, as well

as to oxidation of upwardly diffusing NH4
þ, Mn2þ, and Fe2þ

from depth. The transient buildup of metabolic products,

such as Fe sulfides in sediments during one portion of the

year, followed by net reoxidation during another, can result

in substantial changes in the relative Ca2þ and HCO3
� fluxes

during each period. If, for example, carbonate dissolution is

coupled to the reoxidation of Fe sulfides, the molar ratio of

Ca2þ to alkalinity in the benthic flux at the time of reaction is

1:1 (mol Eq�1). In contrast, aerobic respiration directly pro-

duces a Ca2þ to alkalinity ratio of 1:2 (mol Eq�1; Table 4).

Although the annual average flux ratio of Ca2þ to alkalinity

may be close to 1:2 (i.e., no average annual storage of Fe

sulfides), there can be substantial deviations in this ratio
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from 1:2 during any given season. Similarly, microscale bio-

genic mixing events that reexpose reduced material directly to

oxygenated overlying water (e.g., Fe sulfide-rich fecal piles) can

produce local carbonate dissolution, which presumably can

produce small local excursions in the Ca2þ/alkalinity ratio.

Transient reoxidation processes coupled with CaCO3 dissolu-

tion may explain reported Ca2þ/alkalinity ratios of 1:1 rather

than 1:2 in benthic chamber incubations over highly biotur-

bated, organic carbon-rich margin deposits (Jahnke and Jahnke,

2004). Carbonate precipitation and/or proton exchange reac-

tions may also account for these deviations (Jahnke and Jahnke,

2004; Jahnke et al., 1997).

These diagenetic processes and the associated extensive car-

bonate dissolution occur in both shallow water carbonate and

terrigenous deposits (Aller, 1982a; Walter and Burton, 1990).

For example, carbonate dissolution in Bahamian platform

deposits averages 7.8
4.5 mmol m�2 per day, ranging to as

high as �80 mmol m�2 per day (Burdige, 2010). Similar mag-

nitudes of dissolution fluxes characterize terrigenous shelf and

estuarine deposits, for example, with annual averages in central

Long Island Sound of �5.2 mmol m�2 per day and estimates

ranging to 13 (Green and Aller, 2001). The injection of O2 by

bioirrigation and seagrass roots into otherwise anoxic zones

greatly enhances dissolution in deposits (Burdige et al., 2008,

2010; Ku et al., 1999). Dissolution in shallow water carbonate

depositional environments is also clearly accompanied by

extensive reprecipitation and recrystallization (reprecipitation/

dissolution ratios �3–6), representing both Ostwald ripening

of fine-grained debris and the localized replacement–

recrystallization of relatively unstable by more stable phases

(Burdige et al., 2010; Hover et al., 2001; Rude and Aller, 1991;

Walter et al., 1993). The coupling of dissolution–reprecipitation

can result in substantial isotopic alteration of the residual car-

bonate (Burdige et al., 2010; Patterson andWalter, 1994; Walter

et al., 1993).

 

 
 
 
 
 

8.11.7.5 Dissolution of Carbonate in Deep-Sea Deposits
and Internal Reaction Patterns

Deep-sea deposits are subject to both saturated and undersat-

urated boundary conditions with respect to biogenic carbon-

ates, and metabolic dissolution processes driven by Corg

remineralization are 10–100� lower than in shallow water

systems (Figure 8). Pressure and temperature effects on car-

bonate equilibria and other labile sediment properties require

that measurements of core compositions and benthic solute

fluxes related to CaCO3 diagenesis be made in situ to avoid

substantial artifacts associated with depressurization and

warming (Berelson et al., 1994a; Emerson et al., 1982). The

distribution of remineralization and metabolic acid produc-

tion with depth in sediments interacts with overlying water

boundary conditions and CaCO3 dissolution kinetics to pro-

duce various patterns of CaCO3 loss or storage (Adler et al.,

2001; Archer, 1996b; Boudreau et al., 2010; Hales, 2003; Keir

and Michel, 1993; Martin et al., 2000). The proportions of

highly labile and refractory organic matter, coupled with sed-

iment accumulation rates and bioturbation rates, determine

whether most metabolic acid production takes place at the

sediment–water interface or deeper (several centimeters)
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within deposits (i.e., low or high Damköhler numbers)

(Section 8.11.4.1). When reactions are focused primarily at

the sediment–water interface and the overlying water is satu-

rated, metabolic acids are neutralized in large part by CO3
2� in

overlying water rather than sedimentary CaCO3, so that disso-

lution is relatively inefficient with respect to diagenetic remi-

neralization (Emerson and Bender, 1981; Hales, 2003; Martin

and Sayles, 2003). Undersaturated overlying water and long

residence times of CaCO3 at the interface promote dissolution

regardless of additional sedimentary metabolic acids. When

metabolic acid production occurs several centimeters or deeper

in deposits, diagenetic dissolution can be substantial for both

saturated and undersaturated boundary conditions. Reactions

involving both dissolution and precipitation of carbonates

coupled to remineralization result in characteristic pH, pCO2,

and Ca2þ distributions with depth in deposits (Figure 21).
8.11.7.6 Benthic Alkalinity Fluxes

The alkalinity flux (�carbonate alkalinity¼HCO3
�þ2CO3

2�)
from sediments is often dominated by carbonate dissolution

(Archer, 1996b; Berelson et al., 1994b, 2007; Jahnke and

Jahnke, 2004; Jahnke et al., 1994, 1997). The net burial of

reduced diagenetic products, such as sulfide (Fe sulfides),

may also support an alkalinity flux in continental margin-shelf

regions; however, under oxygenated overlying water, this direct

contribution is often minimized because of extensive reoxida-

tion of metabolites during bioturbation in surface sediments

and also the precipitation of authigenic carbonates at depth in

deposits. The global patterns of depth dependence and mag-

nitude of benthic alkalinity fluxes expressed as CaCO3 disso-

lution rates (i.e., ½ alkalinity flux) largely follow the expected

interactions between biogenic carbonate supply, rates of met-

abolic CO2 production, depth-dependent solubilities, and

overlying water saturation states: they are highest at the mar-

gins where metabolic activity and CaCO3 supply are high,

increased slightly where undersaturated boundary conditions

are present, and decreased at abyssal depths as sources of

CaCO3 are depleted (Figure 22; Berelson et al., 2007). The

magnitudes in abyssal regions >2000 m depth range from

�0.2 to 0.3 and at the margins (<2000 m) from�0.6 (Pacific)

to 2.8 (Atlantic) mmol CaCO3 m
�2 per day. These values

contrast with estuarine and shelf regions (<200 m), where

annual average values of �5–15 mmol CaCO3 m�2 per day

or higher are typical (Berelson et al., 2007; Burdige et al., 2010;

Green and Aller, 2001; Powell et al., 1989). Although shallow

water systems are of comparablemagnitude to pelagic sediments

with respect to CaCO3 accumulation rates (shallow!�15;

pelagic!�11–19�1012 mol year�1) (Schneider et al., 2006),

carbonate production and dissolution budgets in shallow water

(<200 m), particularly for terrigenous deposits, remain very

poorly constrained (Milliman and Droxler, 1996; Schneider

et al., 2006). As surface ocean saturation states continue to

decrease as a result of anthropogenic activities, both shallow

water and deepwater diagenetic dissolution rates will increase,

the former perhaps particularly dramatically because of abun-

dant, relatively soluble high-Mg calcite and aragonite present in

shelf and platform regions (Andersson et al., 2008; Burdige et al.,

2010; Morse et al., 2006).
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Figure 21 Steady-state diagenetic models allow quantification of general metabolic reactions and coupled CaCO3 dissolution and precipitation. Example:
(a) Pore water solute profiles and numerical diagenetic model fits at a continental margin station off Gabon, West Africa, in 1251 m water depth. O2 profiles
were obtained in situ: all other constituents are from retrieved cores (Pfeifer et al., 2002). (b) Modeled reaction rates associated with Corg (OM)
remineralization (Table 3) and secondary reoxidation reactions (Mn2þ–O2, Fe

2þ–NO3
�, and Fe2þ–MnO2; Table 2). (c) In situ pH, pCO2, and Ca2þ profiles.

Overlying water Ocal¼1.07. These profiles demonstrate net dissolution over the 0–3 cm depth interval and authigenic carbonate precipitation below 3 cm.
(d) Modeled net dissolution (DRþ) and net precipitation rates (DR�) of CaCO3 (authigenic carbonates may be partially composed of Fe, Mn carbonates).
Weight percent carbonate distributions (not shown) are consistent with both surficial dissolution (0–3 cm) and subsurface precipitation. Reproduced from
Pfeifer K, Hensen C, Adler M, Wenzhofer F, Weber B, and Schulz HD (2002) Modeling of subsurface calcite dissolution, including the respiration and
reoxidation processes of marine sediments in the region of equatorial upwelling off Gabon. Geochimica et Cosmochimica Acta 66: 4247–4259.
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Figure 22 When CaCO3 and reactive Corg are present, diagenetic dissolution is ubiquitous. (a) As shown by plotting dissolution rates versus saturation
state in overlying water, deepwater benthic CaCO3 dissolution (1–8 mmol m�2 per day) is most intense along continental margins where it is largely
independent of overlying water saturation state (Ocal). (b) Abyssal diagenetic dissolution ranges from �0.1 to 0.6, averaging �0.2 mmol m�2 per day.
A major effect of undersaturated overlying water is evident only at low Ocal (�0.8) in abyssal regions of the Pacific. (c) CaCO3 dissolution in
continental margin deposits varies directly with benthic metabolic activity as expressed by correlation with the depth-integrated Corg remineralization
rate (

R
RC- (mmol m�2 per day), derived from O2 flux). (d) CaCO3 dissolution at abyssal depths within individual ocean basins also generally correlates

directly with Corg remineralization. (e) The highest CaCO3 dissolution fluxes along continental margins take place at <1 km bathymetric depth
where metabolic activity is highest. (f) Dissolution increases slightly at the deepest abyssal depths as the role of overlying water saturation becomes
relatively important and then decreases as all available CaCO3 is reacted. Modified from Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, and Lee K
(2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and
dissolution on the sea floor: A revised global carbonate budget. Global Biogeochemical Cycles 21: GB1024.
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8.11.8 Biogenic Silica and Reverse Weathering

8.11.8.1 Patterns in Biogenic SiO2 Distributions

The fluxes into the ocean of dissolved silica and silicate debris

from rock weathering are balanced in large part by the

formation, the deposition, and the burial of biogenic silica

and its early diagenetic products in marine sediments (see

Chapter 9.4). Thus, understanding and quantifying diagenetic

reactions and early diagenetic behavior of Si takes on major

importance because of its central role in elemental cycling

associated with controls on oceanic productivity (e.g., dia-

toms), on seawater composition through authigenic alumino-

silicate formation (HCO3
�, Kþ, Liþ, and F�), and also on the

paleoceanographic record of ancient productivity and weath-

ering patterns (e.g., Misra and Froelich, 2012). Deposition and

burial of biogenic silica are directly reflected by the dominance

of opaline silica-rich deposits over large areas of the seafloor,

particularly in the Southern Ocean, equatorial Pacific, and east-

ern boundary upwelling regions of low lithogenic particle sup-

ply (Figure 23). As in the case of organic matter and carbonates,

however, the small percentages by weight (1–3%) of opaline

silica in continental margin deposits with high sedimentation

rate are of equivalent or greater importance to global biogenic

silica storage than the far more obvious and extensive areas of

siliceous sediments in the deep sea (DeMaster, 2002).
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Figure 23 The global distribution of sedimentary biogenic SiO2 (bSi) on a w
SiO2 and terrigenous sediment supply and the dissolution–alteration of SiO2

sediment transport–reaction conditions). The highest percentages of SiO2 are
dissolution is minimized relative to the flux of SiO2 (e.g., Southern Ocean and
Peng, 1982). Reproduced from Seiter K, Hensen C, Schroter E, and Zabel M
provinces. Deep-Sea Research Part I 51: 2001–2026; See also: Broecker WS
Doherty Geological Observatory.
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8.11.8.2 Diagenetic Fates, Equilibria, and Dissolution
Reaction Kinetics of Biogenic SiO2

Like other reactive components of sediments, the early diage-

netic reactions of biogenic silica are characterized by complex

balances between dissolution, surface alteration, and synthetic-

precipitation reactions, and a wide range of possible diagenetic

fates (Figure 24). The absolute and relative balances between

these myriad reactions vary substantially in different deposi-

tional environments and depend strongly on the relative avail-

ability and mixtures of reactants (e.g., Aplin, 1993). Acid–base

reactions play less of a direct role in silica diagenesis than for

carbonates, but there is a close coupling to sedimentary redox

reactions through the mobilization of Fe2þ and Al3þ, which can

readily react with biogenic silica (Dixit et al., 2001; Lewin, 1961;

Mackin and Aller, 1989; Van Bennekom et al., 1989), the

decomposition of organic matrix components of biogenic silica,

which can alter dissolution kinetics (Bidle and Azam, 2001;

Lewin, 1961; Van Cappellen and Qiu, 1997a), and the produc-

tion of HS�, the latter affecting the concentrations and behavior

of Fe2þ,3þ, which might otherwise react with silica (Figure 25).

The diagenetic behavior and sedimentary storage of silica

has been traditionally examined from the standpoint of reac-

tions expected for biogenic opaline silica (bSi), deviations

from which are used to infer additional processes, such as
60 120 180
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35 40 45 50 55 60 65 >70

No data

eight percentage basis reflects the relative rates of biogenic opaline
in both the water column and surface sediments (water column and
found where terrigenous sediment supply is low and depth-integrated
Equatorial Pacific) (after Seiter et al., 2004; see also Broecker and

(2004) Organic carbon content in surface sediments – Defining regional
and Peng TH (1982) Tracers in the Sea. New York: Eldigio Press, Lamont
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Figure 24 Schematic diagram illustrating the multiple possible diagenetic fates of biogenic SiO2 particles in sediments. Reproduced from
Michalopoulos P and Aller RC (2004) Early diagenesis of biogenic silica in the Amazon Delta: Alteration, authigenic clay formation, and storage.
Geochimica et Cosmochimica Acta 68: 1061–1085.
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Figure 25 The interaction of reactive Si with Al plays a particularly important role during the diagenesis of biogenic SiO2. (a) The concentration of
Si(OH)4 in saturation equilibrium with diatom debris decreases substantially as the Al/Si ratio in frustules increases from �0.1 mmol mol�1 (water
column) to�3 (core top sediment). (b) The concentration of Si(OH)4 in saturation equilibrium with sediments, determined using flow-through reactors,
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authigenic clay formation. The inset illustrates the behavior at high opal/detrital ratios (region of main graph near 0 detrital/opal ratio) (Data from King
et al., 2000; Köning et al., 1997; Rickert, 2000; Van Bennekom et al., 1991; Van Cappellen and Qiu, 1997b; Van Cappellen et al., 2002). Reproduced from
Loucaides S, Cappellen P, Roubeix V, Moriceau B, and Ragueneau O (2012a) Controls on the recycling and preservation of biogenic silica from
biomineralization to burial. Silicon 4: 7–22.
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alteration or authigenic mineral formation. Thus, the kinetics

of dissolution and the equilibrium behavior of opaline silica

have been incorporated into transport–reaction models in

order to predict and interpret the pore water Si(OH)4 distribu-

tions, the recycling fluxes, the spatial patterns of siliceous

sediments, and the storage of biogenic silica (Archer et al.,

1993; McManus et al., 1995; Rabouille et al., 1997; Schink
Treatise on Geochemistry, Second Edi

 

et al., 1975; Seiter et al., 2010). A typical general kinetic equa-

tion quantifying dissolution is (Hurd, 1973; Rickert et al.,

2002; Schink et al., 1975; see also Chapter 9.4)

RSi ¼ kSiĈSi 1� O½ 	n [18]

where:RSi¼production rate of dissolved Si(OH)4 (mass/volume

pore water); kSi¼ first-order rate coefficient (mass bSi/reactive
tion, (2014), vol. 8, pp. 293-334 
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area bSi/time); ĈSi ¼ reactive surface area bSi/volume pore

water (¼ (reactive surface area bSi/mass bSi) � (mass bSi/volume

pore water)); O¼CSi/Ceq, and Ceq is the equilibrium concentra-

tionof opaline Si. (Note that Si(OH)4 is alsowritten equivalently

as H4SiO4; the latter expression emphasizes acid behavior in

solution, and the former emphasizes the tetrahedral molecular

structure and metalloid properties critical to authigenesis.)

When bSi is not limiting, the behavior is sometimes simply

approximated by (e.g., Kamatani and Riley, 1979)

RSi ¼ k*Si Ceq � CSi

� �
[19]

The pseudo-first-order reaction rate coefficient, kSi*, incorpo-

rates the reactive surface area of biogenic silica/volume solution,

a formulation which compromises direct comparison of values

of k*Si between sites (Hurd and Theyer, 1975). The reaction

order, n, is 1 when O>0.3–0.4 (eqn [18]), so that first-order

kinetics characterizes most sedimentary conditions. As in the

case of carbonate particles, higher-order kinetics is observed in

suspensions at greater degrees of undersaturation (O<0.3–0.4)

(Rickert et al., 2002; Van Cappellen and Qiu, 1997b). Concen-

trations of Si(OH)4 at equilibriumwith recently formedbiogenic

opaline silica particles are�1080 to�1730 mM over 2–25 �C at

pH 8 (Hurd, 1973; Rickert et al., 2002; Van Cappellen and Qiu,

1997b). Pressure effects on equilibrium are of relatively minor

importance (
15%) over oceanic ranges relative to temperature

(Fanning and Pilson, 1974; Loucaides et al., 2012b). The kinetic

and equilibrium relationships of Si in deposits, like other reac-

tive sedimentary components, vary substantially, reflecting the

weighted behavior of a mixture of particles having varied com-

positions and kinetic properties (e.g., initial biogenic particle

source characteristics, alteration history) (Hurd and Theyer,

1975; Van Bennekom et al., 1989; Van Cappellen et al., 2002).

Pore water Si(OH)4 concentrations near equilibrium with

opaline silica are seldomattainedby porewaters in either shallow

water or deep-sea deposits (Hurd, 1973; Loucaides et al., 2012a;

Mackin and Aller, 1989; McManus et al., 1995; Rabouille et al.,

1997; Van Bennekom et al., 1989). In addition to factors, such

as reactive surface area related to the specific biological source

of Si, it is well established that the surfaces of biogenic silica

particles often quickly incorporate and become enriched in

Al3þ, Fe2þ, and Mg2þ, dramatically affecting solubilities and

dissolution behavior of Si in both the oceanic water column

and within sedimentary deposits (Hurd, 1973; Kamatani et al.,

1988; Lewin, 1961; Loucaides et al., 2010; Rickert, 2000; Van

Bennekom et al., 1989; Willey, 1975, 1978, 1980). Al in particu-

lar can progressively permeate siliceous tests during initial depo-

sition and burial (Dixit and Van Cappellen, 2002; Dixit et al.,

2001; Van Bennekom et al., 1989, 1991). The incorporation of Al

substantially lowers the reactivity and solubility of biogenic silica

and can promote preservation and initial burial as slightly altered

Al-enriched bSi (Figure 26(a)). Conversion to less soluble, more

crystallized forms, opal CT and quartz, takes place during later

stages of opaline Si diagenesis (e.g., Hurd and Theyer, 1975;

Kastner et al., 1977; Williams et al., 1985; see also Chapter 9.4).

8.11.8.3 Authigenic Silicate Formation and Reverse
Weathering

Although the major sedimentary storage mode for biogenic

silica is as opaline or slightly altered opaline silica (see
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Chapter 9.4), there are multiple alternative diagenetic reaction

paths that can result in partial or complete conversion of silica

into authigenic aluminosilicates (Figures 1 and 24). Close

associations of biogenic silica with distinct authigenic alumi-

nosilicate minerals have long been reported from a variety of

depositional environments. For example, Hurd (1973)

described the intimate intergrowth of authigenic Al, Si phases

with radiolarian tests in Pacific deep-sea sediments, and pro-

posed equilibration with such phases as one possible control

on pore water Si(OH)4 concentrations. Similar associations of

authigenic clay and siliceous biogenic debris have been docu-

mented at numerous additional deep-sea sites (Cole, 1985;

Heath and Dymond, 1977; Hein et al., 1979; Johnson, 1976;

Odin and Frohlich, 1988; Sayles and Bischoff, 1973). Alumi-

nosilicates have also been reported associated intimately with

living diatoms in nearshore marine waters (Van Bennekom

and Van der Gast, 1976), and obvious replacement of diatom

frustules by poorly crystalline authigenic clay minerals occurs

rapidly in saline lakes (Badaut and Risacher, 1983). Experi-

mental incubations of marine sediments and diatoms readily

demonstrate rapid (0.1–2 year) nucleation and growth of alu-

minosilicates on frustules and other reactive siliceous sub-

strates in seawater at low temperature (T<30 �C) (Loucaides

et al., 2010; Michalopoulos and Aller, 1995; Michalopoulos

et al., 2000). Consistent with observations of solids, studies of

diatom frustule-rich Southern Ocean deposits have implicated

control of pore water silicate concentrations by authigenic alu-

minosilicate formation during early diagenesis (Dixit et al.,

2001; King et al., 2000; Rabouille et al., 1997; Van Beusekom

et al., 1997; Van Cappellen and Qiu, 1997a,b). Perhaps most

importantly in terms of global mass balance considerations,

bottom waters and pore waters in a wide range of nearshore

high sedimentation rate deltaic and estuarine environments also

typically show regular stoichiometric relationships between dis-

solved Al and Si, indicative of extremely rapid, early diagenetic

formation of authigenic aluminosilicates (Mackin, 1986;

Mackin and Aller, 1984, 1986, 1989).

The involvement of biogenic silica in the formation of

aluminosilicate phases represents a form of reverse weathering

sensu Mackenzie and Garrels (Mackenzie and Garrels, 1966;

Mackenzie et al., 1981; Michalopoulos and Aller, 1995;

Wollast, 1974; Wollast and Mackenzie, 1983). These reactions

have the general form

ReactiveSiO2 þ Al OHð Þ�4 þ Fe2þ3þ,Mg2þ, Kþ, Liþ

 �þ F�

þHCO3
� ! aluminosilicates þ CO2 þH2O

[20]

Reverse weathering reactions result in the formation of

relatively cation-rich aluminosilicate phases at the expense of

reactive SiO2 phases, such as biogenic silica and degraded clays

during early diagenesis in seawater, and these reactions have

been proposed as a significant component of oceanic elemen-

tal mass balances (Mackenzie and Garrels, 1966). The apparent

lack of confirming evidence in the initial searches for such

reactions in the oceans (e.g., Dasch, 1969; Russell, 1970),

coupled with obvious alternative elemental sinks evident in

hydrothermal systems, resulted in a tendency to discount their

existence and to ignore many subsequent indications to the

contrary (Hurd, 1973; Mackenzie et al., 1981; Mackin and
n, (2014), vol. 8, pp. 293-334 
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Figure 26 Pore water Si(OH)4 concentrations typically asymptote to different values in different geographic regions, reflecting balances between
supply, dissolution reaction kinetics (e.g., initial source particles and alteration), surface alteration, and secondary mineral formation. Examples: (a)
stations along a north–south transect along 140� W in the equatorial Pacific (after McManus et al., 1995) and (b) stations along a north–south transect
through the Indian Ocean sector of the southern Polar Front. Reproduced from Rabouille C, Gaillard JF, Treguer P, and Vincendeau MA (1997) Biogenic
silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector). Deep-Sea Research Part II 44: 1151–1176.
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Aller, 1989; Risvet, 1978; Savin and Epstein, 1970; Sayles,

1979; Yeh and Eslinger, 1986). Sayles (1979), for example,

reported extensive evidence from pore waters obtained

throughout the deep sea indicating the common occurrence

of silicate authigenesis. It has also long been recognized that

authigenic silicates are widely present and formed on conti-

nental shelves (e.g., green marine clays), but the timescales of

formation, like those inferred from the deep sea, were tradi-

tionally assumed to be of order 103–106 years (Odin, 1988; see

Chapter 9.12).

A major conceptual change in the last few decades has come

from experimental and field studies of deltaic sediments men-

tioned previously that have directly demonstrated the existence

of rapid, early diagenetic reverse weathering reactions in

deposits with extremely high sediment accumulation rates,

such as the Amazon, Mississippi, and Congo deltas. These

studies indicate that in at least some Fe, Al oxide-rich environ-

ments, such as tropical and subtropical deltas, reactive
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biogenic silica availability could be the limiting factor for the

formation of authigenic aluminosilicate phases (Ku and

Walter, 2003; Loucaides et al., 2010; Michalopoulos and

Aller, 1995, 2004; Presti and Michalopoulos, 2008). Reaction

limitation by biogenic silica in deltaic systems contrasts with

regions that have low sediment accumulation rates, such as the

Southern Ocean, where the availability of lithogenic (Al, Fe)

debris is limiting (Aplin, 1993; Van Cappellen and Qiu,

1997b). The roles of high sediment accumulation sinks for

biogenic silica in the form of authigenic aluminosilicates, and

for seawater solutes, such as Kþ, Liþ, Mg2þ, and F�, that are
incorporated into clays, remain an exciting frontier of early

diagenetic and elemental cycling research (e.g., Figure 27)

(Michalopoulos and Aller, 2004; Rude and Aller, 1994). It is

clear, however, that in environments with high sediment accu-

mulation rates such as deltas, the alteration of biogenic silica

and formation of authigenic silicates can increase net storage

by factors of 2–3� (Mississippi delta) or 5–10� (Amazon
tion, (2014), vol. 8, pp. 293-334 
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Figure 27 Pore water profiles of minor elements in rapidly accumulating and highly mobile deltaic sediments often demonstrate extensive uptake of
seawater solutes associated with authigenic clay formation over seasonal timescales. Example: (a) Kþ and (b) F� concentration profiles from two
sites on the Amazon delta topset (February 1990; OST-2, 20 m; OST-3, 40m depth; o¼1.4–4.8 gcm�2 per year at OST-2, OST-3, respectively).
Stoichiometric loss ratios are consistent with a ‘glauconitic’ clay. Cl� profiles demonstrate that reaction rather than salinity controls Kþ and F� gradients.
Reproduced from Rude PD and Aller RC (1994) Fluroine uptake by Amazon Continental-Shelf sediment and its impact on the global fluorine cycle.
Continental Shelf Research 14: 883–907.
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delta) from what might otherwise be estimated from relatively

unaltered biogenic silica burial (Michalopoulos and Aller,

2004; Presti and Michalopoulos, 2008). When such diagenetic

alteration of biogenic silica to aluminosilicates is incorporated

into global budgets for Si, the continental margins become at

least comparable in importance to the deep sea for biogenic Si

storage (Laruelle et al., 2010).
8.11.9 Future Directions

Human activities are substantially and dramatically affecting the

Earth surface system and driving major global environmental

changes. Many of these changes are strongly focused into the

coastal and continental boundary regions where biogeochemi-

cal interactions are most intense and diagenetic processes are

critical components of biogeochemical cycling across a broad

range of timescales. The continental margins, including shelves

and deltaic systems, are disproportionally important in bioac-

tive elemental cycling relative to the vast global ocean. Repre-

senting �15–20% of the seafloor area, the boundary regions

accumulate �90% of the sedimentary debris entering or gener-

ated in the sea and store 50–80% of bioactive elements, such as

reactive C and Si, in various forms (Berner, 1982; Dunne et al.,

2007; Jahnke, 2010; Liu et al., 2010; Laruelle et al., 2010;

Milliman and Farnsworth, 2011; Wollast, 1998). These regions

are characterized by the greatest diversity and most complex

configurations of diagenetic regimes on Earth and, in contrast

to the deeper, open ocean, are not particularly amenable to

simple, steady-state diagenetic modeling (Figure 2). Technolog-

ical developments, such as new optical, immunological, and

electrochemical sensors, eddy correlation techniques, miniatur-

ized mass spectrometers for in situ applications (Camilli and
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Duryea, 2009), kinetic studies, and sophisticated numerical

models, will provide a basis for accurately constraining

unsteady, heterogeneous processes in these dynamic boundary

environments. Increasingly close integration of diagenetic,

ocean–atmosphere–sediment dynamics, and ecosystem models

(e.g., Middelburg and Soetaert, 2004; Soetaert et al., 2000),

together with the intuition derived from experience and obser-

vation, will be required to understand and evaluate the impacts

and predict the future consequences of unfettered anthropo-

genic forcing on complex margin systems and thus global bio-

geochemical cycles (Liu et al., 2010).
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