

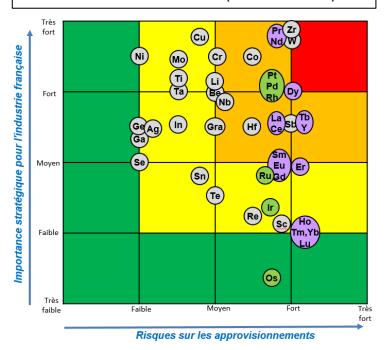
15 Mai 2019

Matériaux stratégiques et terres rares

Symposium IRCE : Solidarité, Autonomie, interdépendance, sécurisation, segmentation et optimisation énergétique européenne »

Patrick d'Hugues

Directeur du Programme Scientifique : Ressources Minérales et Economie Circulaire



Approvisionnement en métaux : Métaux critiques ou stratégiques?

Notion variable dans le temps qui s'exprime selon deux axes : la disponibilité de la substance et son importance économique.

- 1) la criticité est avant tout une perception à l'échelle de chaque acteur
- 2) Elle évolue dans le temps en fonction des modifications des marchés, de l'offre et de la demande.

EVALUATION DE LA CRITICITE DES SUBSTANCES OU GROUPES DE SUBSTANCES ETUDIEES PAR LE BRGM DEPUIS 2010 Positionnements révisés en 2018 ("Fiches de criticité")

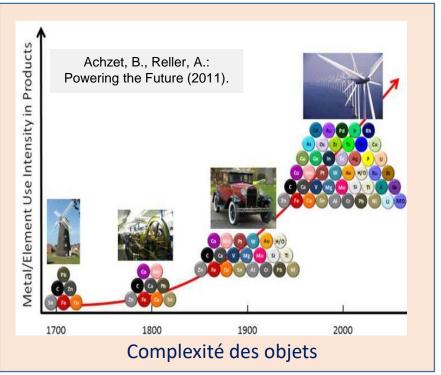
Quelques définitions:

Métal critique :

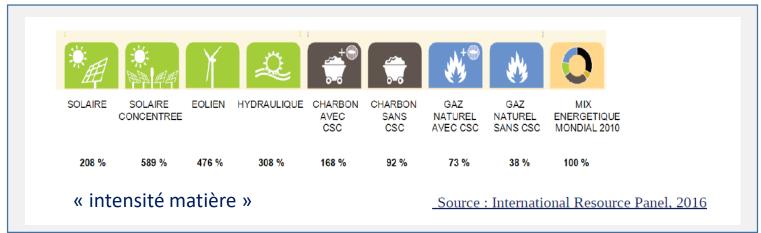
pouvant entrainer des impacts industriels ou économiques négatifs importants liés à un approvisionnement difficile, sujet à des aléas.

Métal stratégique :

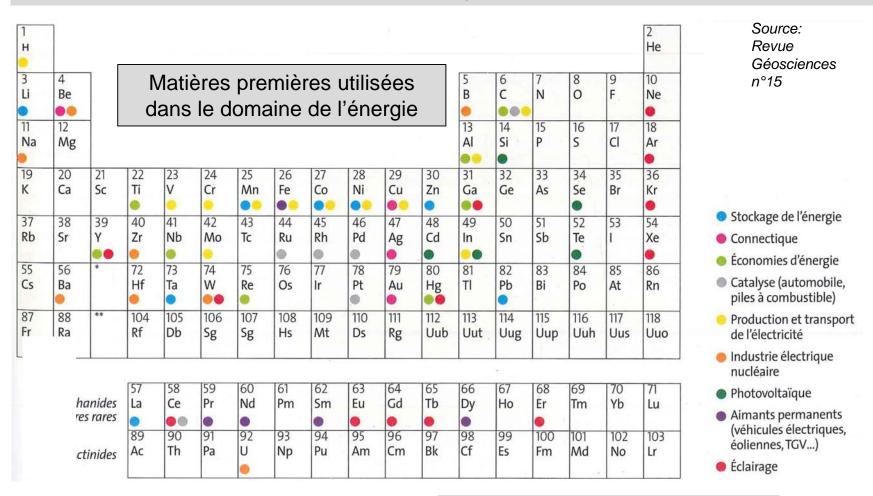
indispensable à la politique économique d'un État, à sa défense, à sa politique énergétique (exemple : métaux pour la transition énergétique).

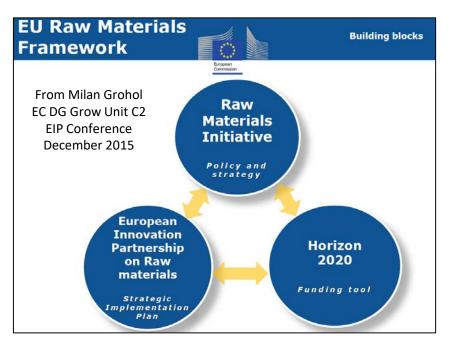

Métal rare:


- au sens Géologique / géochimique : dont l'abondance moyenne et/ou la disponibilité (capacité à se concentrer en gisements) est faible dans la croûte terrestre
- au sens industriel : métal peu usité, en particulier dans des applications grand public


http://www.mineralinfo.fr/page/matieres-premieres-critiques

Approvisionnement en métaux : une demande croissante et diversifiée




Approvisionnement en métaux : une demande croissante et diversifiée

Dépendance et compétition croissantes des usages d'un même metal pour la production d'énergie

Géosciences pour une Terre durable

Approvisionnement en métaux : un enjeu Européen

Raw Materials Initiative (2008)

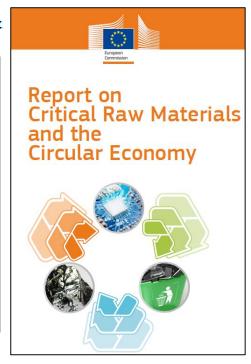
a strategy for tackling the issue of access to raw materials in the EU / Europe 2020 Strategy 3 pillars

- Fair and sustainable supply of raw materials from global markets
- Sustainable supply of raw materials within the EU
- Resource efficiency and supply of "secondary raw materials" through recycling (circular economy action plan)

600-800 Millions d'Euro de financement communautaire 2014 - 2020

Some Actions from RMI

- The European Innovation Partnership (EIP) on Ra Materials
 - List of critical raw materials in the EU
- Horizon 2020 SC5 : Climate action, environment, resource efficiency and raw materials
- EIT Raw Material: World's largest innovation community in the raw materials sector



Approvisionnement en métaux : Liste (s) européenne des métaux critiques

Table 1: The 2017 List of Critical Raw Materials to the EU (HREEs = Heavy Rare Earth Elements¹², LREEs = Light Rare Earth Elements¹², PGMs = Platinum Group Metals¹³)

Critical Raw Materials											
Antimony	Fluorspar	LREEs	Phosphorus								
Baryte	Gallium	Magnesium	Scandium								
Beryllium	Germanium	Natural graphite	Silicon metal								
Bismuth	Hafnium	Natural rubber	Tantalum								
Borate	Helium	Niobium	Tungsten								
Cobalt	HREEs	PGMs	Vanadium								
Coking coal	Indium	Phosphate rock									

2017 CRMs vs. 2011 CRMs												
Antimony	LREEs	Baryte	Bismuth									
Beryllium	Magnesium	Borate	Hafnium									
Cobalt	Natural graphite	Vanadium	Helium									
Fluorspar	Niobium		Natural Rubber									
Gallium	PGMs		Phosphate rock									
Germanium	Tungsten		Phosphorus									
HREEs	Scandium		Silicon metal									
Indium	Tantalum											
<u>Legend</u>												
Black: CRMs in 2017 and 2011												

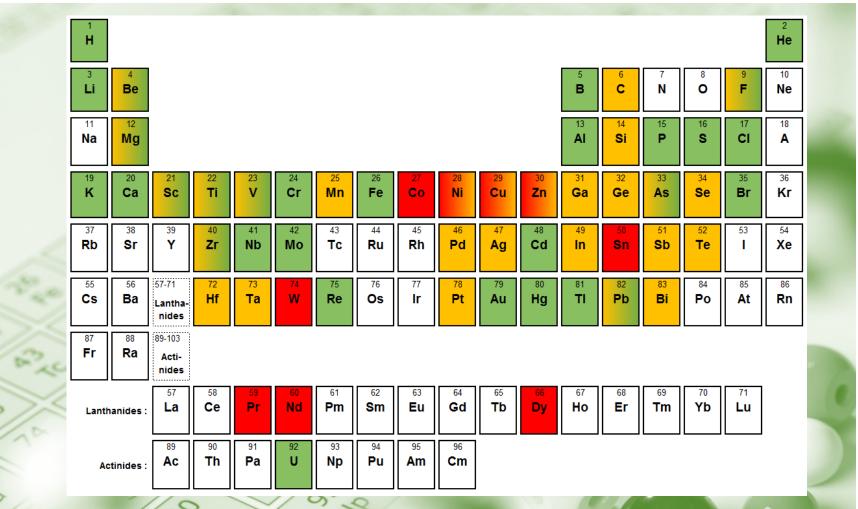
Study on the review of the list of Critical Raw Materials

Final Report

Written by Deloitte Sustainability British Geological Survey Bureau de Recherches Géologiques et Minières Netherlands Organisation for Applied Scientific Research

June 2017

Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs Raw Materials


Italics: Materials grouped under the REEs group in 2011

Green: CRMs assessed in 2017, not assessed in 2011

Red: CRMs in 2017, non-CRMs in 2011

WMF Criticality assessment by BRGM, CRU & McKinsey

From Pierre Toulhoat (COO BRGM) et al., World material Forum 201 Very high degree of risks

High probability of risk occurrence

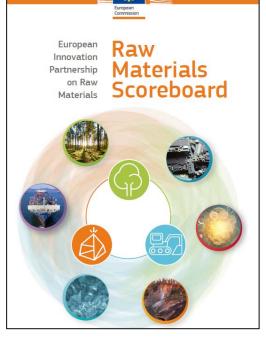
Risk occurrence to be closely followed

Low probability of risk occurrence

Low degree of risks

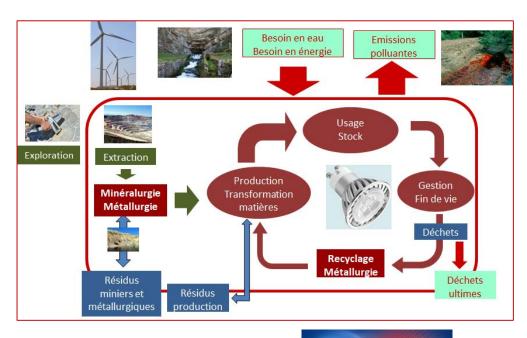
Recyclage des métaux : un potentiel de développement sur certains métaux

End-of-life recycling input rate (EOL-RIR) [%]


Н		> 50% > 25-50%															He 1%
Li 0%	Be 0%		> 10-25% B* C N O F* 1.0%														
Na	Mg 13%		4 1% Al Si P* S Cl 12% 0% 17% 5%														Ar
K* 0%	Ca	5c 0%	Ti 19%	V 44%	Cr 21%	Mn 12%	Fe 31%	Co 35%	Ni 34%	Cu 17%	Zn 31%	Ga 0%	Ge 2%	As	Se 1%	Br	Kr
Rb	Sr	Y 31%	Zr	Nb 0%	Mo 30%	Tc	Ru 11%	Rh 9%	Pd 9%	Ag 55%	Cd	In 0%	Sn 32%	Sb 28%	Te 1%	_	Xe
Cs	Ba 1%	La-Lu ¹	Hf 1%	Ta 1%	W 42%	Re 50%	05	lr 14%	Pt 11%	Au 20%	Hg	Τl	Pb 75%	Bi 1%	Ро	At	Rn
Fr	Ra	Ac-Lr ²	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo

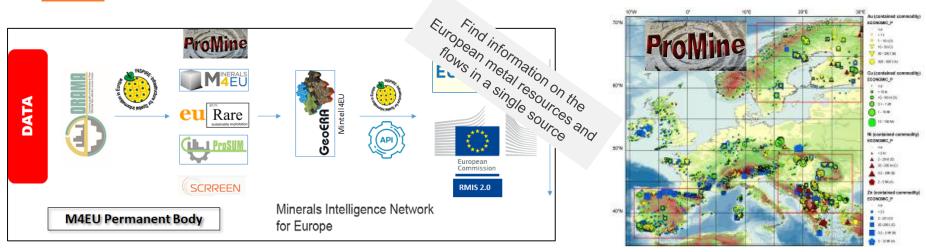
¹ Group of Lanthanide	La 1%	Ce 1%	Pr 10%	Nd 1%	Pm	Sm 1%	Eu 38%	Gd 1%	Tb 22%	Dy 0%	Ho 1%	Er 0%	Tm 1%	Yb 1%	Lu 1%
² Group of Actinide	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Aggre- gates		Coaking Coal		Feldspar	Gypsum	Kaolin Clay	Lime- stone	Magne- site	Natural Cork	Natural Graphite	Natural Rubber	Natural Teak Wood	Perlite	Sapele wood	Silica Sand	Talc
7%	50%	0%	0%	10%	1%									15%	0%	5%


^{*} F = Fluorspar; P = Phosphate rock; K = Potash, Si = Silicon metal, B = Borates.

Limites du recyclage : dispersion et « entropie »

Vers une économie « plus » circulaire qui optimise « flux » MP primaires et secondaires



Establish an EU Expert Network that \mathbf{REEN} covers the whole value chain for present and future critical raw materials.

- Vers une approche systémique du cycle des métaux et matériaux sur l'ensemble du cycle de vie (de l'exploration à la fin de vie)
- Vers l'optimisation de la valorisation des métaux et matériaux extraits (valorisation des déchets, notion de sous produits, optimisation du recyclage à toutes les étapes)
- Vers la prise en compte des externalités environnementales du cycle (et sa monétarisation)
- Vers la prise en compte des transferts d'impact associés à la chaine de valeur de production des objets (approvisionnement responsable)

Evaluation du potentiel Européen Primaire et Secondaire ; Approche flux et stock

Contact: D. Cassard, BRGM

Prospecting
Secondary raw
materials in the
Urban mine and
Mining wastes

- Bases de données Gisement + MP secondaires et déchets
- Amélioration des modèles de données / Homogénéisation
- Interopérabilité sur les données I et II
- Analyse des flux et stock (MFA) + Prédictivité

Valorisation de ressources complexes : nouvelles solutions intégrées

CEReS

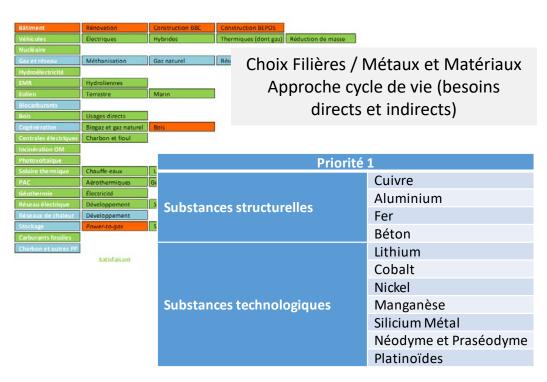
Developing innovative technologies for unlocking the use of potential domestic raw materials complex ores and mining, mineral processing and metallurgical waste

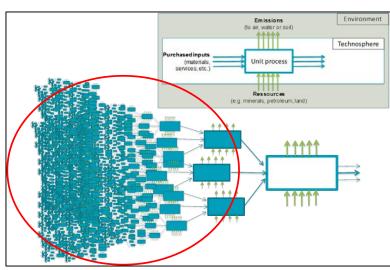
Proposals for New technical solutions

 Better mineral liberation, treatment of fine particles, reuse of all remaining materials, biotechnological solutions, optimised downstream options, lower energy and water requirements, smaller footprint, mobility of equipment ...

with integration of LCA approach and cost/benefits of externalities

Nemo Project: Process development; ressource effciency & Eu collaborative approach




Transition énergétique et impacts associés

Quel « besoin matière » pour la transition énergétique en France ? (Projet SURFER) : Analyse de l'impact matières premières, énergies et eau du déploiement des énergies renouvelables sur la période 2015-2050 en France

Principaux objectifs:

- Evaluer les besoins directs et indirects de matières premières, d'énergie, d'eau et de sols pour la mise en place de la transition énergétique en France
- o Etudier la faisabilité de cette transition en comparant ces besoins à la consommation française
- o Etudier les impacts environnementaux et les risques d'approvisionnement reliés à ces besoins

Villeneuve, La Sim Avril 2019 Contact : j.villeneuve@brgm.fr

Conclusion

- La dépendance aux métaux = une dépendance aux objets qui en contiennent (notamment ceux de la transition écologique)
- La question des métaux stratégiques/critiques : sujet qui doit s'appréhender sur l'ensemble du cycle de vie (en intégrant ressources primaires et secondaires)
- Plusieurs sources d'approvisionnement (complémentaires) et des contraintes associées
 - Activité minière et métallurgique « hors territoire » = transfert d'impact à gérer ; assurer la traçabilité des approvisionnements
 - « Valorisation » déchets miniers, métallurgiques et industriels : un potentiel à « caractériser » et éventuellement à exploiter = besoin d'innovation, de réglementation adaptée et d'acceptabilité sociétale.
 - Recyclage (notamment DEEE) : un besoin de caractérisation, de « massification » des sources et de pérennité des filières
- Des besoins de soutien à la R&D et à l'innovation (académique, appliquée et préindustrielle) ... dans les mêmes projets
 - Soutien travaux « d'intelligence minérale » et de « mine responsable » (importance du primaire!)
 - Soutien R&D pour la Mine ou la Mine Urbaine : gestion des « objets » dans leur globalité audelà des métaux « critiques et stratégiques »
 - Soutien aux développement de méthodologie ACV pour les matières premières ; prise en compte des externalités environnementales dans les modèles économiques

Pour en savoir plus :

email: p.dhugues@brgm.fr

site: www.brgm.fr

