CHAPITRE 5 LA PRODUCTION D'ÉLECTRICITÉ LA TENSION ALTERNATIVE

⇒ Informations : consulter les sites :

http://www.profmartinpc.com/pages/Chapitre_7_La_production_delectricite-8540160.html

https://www.edf.fr/groupe-edf/espaces-dedies/l-energie-de-a-a-z

I) <u>Les centrales électriques, les sources</u> <u>d'énergie</u>

COLLER LE DOCUMENT!
ET LE LIRE!!!!!!!!

Une **centrale électrique** est une unité de production importante d'énergie électrique.

On classe les centrales en 6 catégories :

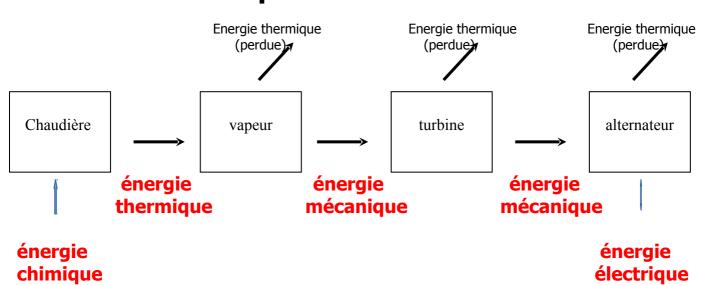
- thermique à flamme (combustion du pétrole, charbon, biomasse, ...)
- thermique sans flamme:
 - nucléaire et
 - géothermique
- hydraulique
- éolienne
- solaire (photovoltaïque)

Une centrale électrique transforme une énergie primaire en énergie électrique. Les sources d'énergie sont classées en :

- renouvelables : soleil, vent, eau, biomasse
- non renouvelables (= épuisables = énergies fossiles) : pétrole, charbon, gaz et fioul, uranium

On parle aussi **d'énergie « propre »** : source d'énergie dont l'exploitation n'entraîne <u>aucune</u> <u>pollution</u> (éolienne, hydraulique, solaire, géothermique).

⇒Le choix des sources d'énergie, pour un pays, résulte du compromis entre différents critères, dont les ressources locales, le coût de revient, la pollution engendrée, etc.

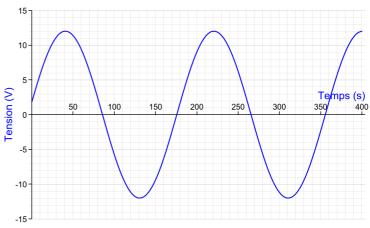

Pays	Situation actuelle	Pour l'avenir				
France	78 % nucléaire	Le nucléaire rend le pays moins dépendant des pays producteurs				
	11 % hydraulique	de pétrole. On voit qu'un gros effort reste				
	9 % thermique au fioul	à fournir dans le domaine des énergies « propres », domaine				
	2 % autres (éolien, solaire,)	où la France est en retard par rapport à ses voisins du Nord de l'Europe, par exemple.				

Toutes les centrales électriques (sauf les solaires) possèdent un **ALTERNATEUR**. Cet appareil permet de convertir l'énergie mécanique (qui fait tourner) en énergie électrique.

On représente l'ensemble des **conversions d'énergie** qui ont lieu dans une centrale par un **diagramme d'énergie**.

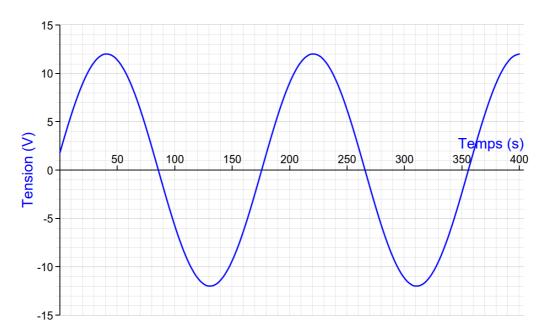
Exemple: diagramme d'énergie pour une centrale thermique à flamme:

II) La tension alternative


Observons à l'oscilloscope (= voltmètre) la tension délivrée par une pile et une tension délivrée par un GTBF (= alternateur = tension du secteur).

L'oscilloscope est un voltmètre qui permet de visualiser les variations des tensions U en fonction du temps t : U=f(t).

⇒La **tension** produite par une **pile** ne varie pas au cours du temps, elle est **constante**. Cette tension est dite **continue** (=CC= **courant continu** =DC= **direct courant**)



⇒La tension produite par un alternateur (=EDF) change au cours du temps, sa valeur change régulièrement de signe, elle est alternative (=AC)

(alternativement positive puis négative).

⇒ Étude graphique : les caractéristiques d'une tension sinusoïdale alternative

- La valeur de la tension change au cours du temps.

\$\to\$ La tension est variable.

- La tension est parfois **positive** parfois **négative**.

\$\to\$ La tension est **alternative**.

- La courbe a une **forme de vague** = sinusoïde.

\$\text{La tension est sinusoïdale.}

- La tension se reproduit à intervalles de temps réguliers.

La partie de la courbe qui se répète est le **motif**.

\$\to\$ La tension est dite **périodique.**

♣ La **période** notée **T** est la durée en seconde du motif

⇔ici la période T= 180 s

- La **fréquence** d'une tension périodique est égale à l'inverse de la période, c'est le nombre de périodes par seconde.

L'unité de la fréquence notée f est le hertz (symbole Hz).

$$f = 1/T$$

avec f en Hz et T en s

- La tension passe par une valeur maximale appelée amplitude et notée Umax.

- La **valeur efficace** notée **U**_{eff} d'une tension alternative sinusoidale est mesurée par un voltmètre en position alternative (V~).

$$U_{eff} = U_{max} / \sqrt{2}$$

Avec U_{max} et U_{eff} en V

Applications: CALCULER!

_	La	tension	du	secteur	délivr	ée	par	EDF	est
a	ltei	rnative e	t si	nusoïdal	e , et a	pou	ır pé	riod	e :

 $T = 20 \text{ ms } (millisecondes) = \dots s.$

⇒ Calculer la fréquence f de la tension du secteur :

- La **tension du secteur délivrée par EDF** a pour valeur efficace $U_{\text{eff}} = 230 \text{ V}$.

 \Rightarrow Calculer la tension maximale U_{max} de la tension du secteur :

1.....

SPC: EX $n^{\circ}1 + 2 p.191 + n^{\circ}16 p.194$

n°1 p.191:

- 1) variable
- 2) durée
- 3) alternative
- 4) continue
- 5) secondes
- 6) continue

Ex n°2 p.191:

a) Tension: variable, alternative, périodique

b) Tension: continue, négative

c) Tension : positive, périodique, variable

d) Tension: alternative, variable, périodique

Ex n°16 p.194