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Abstract

In modern face recognition, the conventional pipeline
consists of four stages: detect⇒ align⇒ represent⇒ clas-
sify. We revisit both the alignment step and the representa-
tion step by employing explicit 3D face modeling in order to
apply a piecewise affine transformation, and derive a face
representation from a nine-layer deep neural network. This
deep network involves more than 120 million parameters
using several locally connected layers without weight shar-
ing, rather than the standard convolutional layers. Thus we
trained it on the largest facial dataset to-date, an identity
labeled dataset of four million facial images belonging to
more than 4,000 identities, where each identity has an av-
erage of over a thousand samples. The learned representa-
tions coupling the accurate model-based alignment with the
large facial database generalize remarkably well to faces in
unconstrained environments, even with a simple classifier.
Our method reaches an accuracy of 97.25% on the Labeled
Faces in the Wild (LFW) dataset, reducing the error of the
current state of the art by more than 25%, closely approach-
ing human-level performance.

1. Introduction

Face recognition in unconstrained images is at the fore-
front of the algorithmic perception revolution. The social
and cultural implications of face recognition technologies
are far reaching, yet the current performance gap in this do-
main between machines and the human visual system serves
as a buffer from having to deal with these implications.

We present a system (DeepFace) that has closed the ma-
jority of the remaining gap in the most popular benchmark
in unconstrained face recognition, and is now at the brink
of human level accuracy. It is trained on a large dataset of
faces acquired from a population vastly different than the
one used to construct the evaluation benchmarks, and it is
able to outperform existing systems with only very minimal
adaptation. Moreover, the system produces an extremely

compact face representation, in sheer contrast to the shift
toward tens of thousands of appearance features in other re-
cent systems [5, 7, 2].

The proposed system differs from the majority of con-
tributions in the field in that it uses the deep learning (DL)
framework [3, 20] in lieu of well engineered features. DL is
especially suitable for dealing with large training sets, with
many recent successes in such diverse domains in vision,
speech and language modeling. Specifically with faces, the
success of the learned net in capturing facial appearance in
a robust manner is highly dependent on a very rapid 3D
alignment step. The network architecture is based on the
assumption that once the alignment is completed, the loca-
tion of each facial region is fixed at the pixel level. It is
therefore possible to learn from the raw pixel RGB values,
without any need to apply several layers of convolutions as
is done in many other networks [18, 20].

In summary, we make the following contributions : (i)
The development of an effective deep neural net (DNN) ar-
chitecture and learning method that leverage a very large
labeled dataset of faces in order to obtain a face representa-
tion that generalizes well to other datasets; (ii) An effective
facial alignment system based on explicit modeling of 3D
faces; and (iii) Advance the state of the art significantly in
(1) the Labeled Faces in the Wild benchmark (LFW) [17],
reaching near human-performance; and (2) the YouTube
Faces dataset (YTF) [29], decreasing the error rate there by
more than 50%.

1.1. Related Work
Big data and deep learning In recent years, a large num-
ber of photos have been crawled by search engines, and up-
loaded to social networks, which include a variety of uncon-
strained material, such as objects, faces and scenes. Being
able to leverage this immense volume of data is of great in-
terest to the computer vision community in dealing with its
unsolved problems. However, the generalization capability
of many of the conventional machine-learning tools used in
computer vision, such as Support Vector Machines, Princi-
pal Component Analysis and Linear Discriminant Analysis,
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tend to saturate rather quickly as the volume of the training
set grows significantly.

Recently, there has been a surge of interest in neu-
ral networks [18, 20]. In particular, deep and large net-
works have exhibited impressive results once: (1) they
have been applied to large amounts of training data and (2)
scalable computation resources such as thousands of CPU
cores [11] and/or GPU’s [18] have become available. Most
notably, Krizhevsky et al. [18] showed that very large and
deep convolutional networks [20] trained by standard back-
propagation [24] can achieve excellent recognition accuracy
when trained on a large dataset.

Face recognition state of the art Face recognition er-
ror rates have decreased over the last twenty years by three
orders of magnitude [12] when recognizing frontal faces in
still images taken in consistently controlled (constrained)
environments. Many vendors deploy sophisticated systems
for the application of border-control and smart biometric
identification. However, these systems have shown to be
sensitive to various factors, such as lighting, expression, oc-
clusion and aging, that substantially deteriorate their perfor-
mance in recognizing people in such unconstrained settings.

Most current face verification methods use hand-crafted
features. Moreover, these features are often combined
to improve performance, even in the earliest LFW con-
tributions. The systems that currently lead the perfor-
mance charts employ tens of thousands of image descrip-
tors [5, 7, 2]. In contrast, our method is applied directly
to RGB pixel values, producing a very compact and even
sparse descriptor.

Deep neural nets have also been applied in the past to
face detection [23], face alignment [26] and face verifica-
tion [8, 15]. In the unconstrained domain, Huang et al. [15]
used as input LBP features and they showed improvement
when combining with traditional methods. In our method
we use raw images as our underlying representation, and
to emphasize the contribution of our work, we avoid com-
bining our features with engineered descriptors. We also
provide a new architecture, that pushes further the limit of
what is achievable with these networks by incorporating 3D
alignment, customizing the architecture for aligned inputs,
scaling the network by almost two order of magnitudes and
demonstrating a simple knowledge transfer method once the
network has been trained on a very large labeled dataset.

Metric learning methods are used heavily in face verifi-
cation. In several cases existing methods are successfully
employed, but this is often coupled with task-specific in-
novation [25, 28, 6]. Currently, the most successful sys-
tem that uses a large data set of labeled faces [5] employs
a clever transfer learning technique which adapts a Joint
Bayesian model [6] learned on a dataset containing 99,773
images from 2,995 different subjects to the LFW image do-
main. Here, in order to demonstrate the effectiveness of the
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Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fidu-
cial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on
the 2D-aligned crop with their corresponding Delaunay triangulation, we
added triangles on the contour to avoid discontinuities. (d) The reference
3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle
visibility w.r.t. to the fitted 3D-2D camera; black triangles are less visible.
(f) The 67 fiducial points induced by the 3D model that are using to direct
the piece-wise affine warpping. (g) The final frontalized crop. (h) A new
view generated by the 3D model (not used in this paper).

features, we keep the distance learning step trivial.

2. Face Alignment
Existing aligned versions of several face databases (e.g.

LFW-a [28]) help to improve recognition algorithms by pro-
viding a normalized input [25]. However, aligning faces
in the unconstrained scenario is still considered a difficult
problem that has to account for many factors such as pose
(due to the non-planarity of the face) and non-rigid expres-
sions, which are hard to decouple from a person’s identity-
bearing facial morphology. Recent methods have shown
successful ways that compensate for these difficulties by
using sophisticated alignment techniques. Those methods
can be one or more from the following: (1) employing an
analytical 3D model of the face [27], (2) searching for sim-
ilar fiducial-points configurations from an external dataset
to infer from [4], and (3) unsupervised methods that find a
similarity transformation for the pixels [16, 14].

While alignment is widely employed, no complete phys-
ically correct solution is currently present in the context of
unconstrained face verification. 3D models have fallen out
of favor in recent years, especially in unconstrained envi-
ronments. However, since faces are 3D objects, done cor-
rectly, we believe that it is the right way. In this paper, we
describe a system that combines analytical 3D modeling of
the face based on fiducial points, used to warp a detected
facial crop to a 3D frontal mode (frontalization).

Similar to much of the recent alignment literature, our
alignment solution is based on using fiducial point detectors
to direct the alignment process. Localizing fiducial points
in unconstrained images is known to be a difficult problem,



but several works recently have demonstrated good results,
e.g., [31]. In this paper, we use a relatively simple fidu-
cial point detector, but apply it in several iterations to refine
its output. In each iteration, fiducial points are extracted by
a Support Vector Regressor (SVR) trained to predict point
configurations from an image descriptor. Our image de-
scriptor is based on LBP Histograms [1], but other features
can also be considered. By transforming the image using
the induced similarity matrix T to a new image, we can run
the fiducial detector again on a new feature space and refine
the localization.

2D Alignment We start our alignment process by de-
tecting 6 fiducial points inside the detection crop, centered
at the center of the eyes, tip of the nose and mouth locations
as illustrated in Fig. 1(a). They are used to approximately
scale, rotate and translate the image into three anchor lo-
cations by fitting T i2d := (si, Ri, ti) where: xjanchor :=
si[Ri|ti]∗xjsource for points j = 1..6 and iterate on the new
warped image until there is no substantial change, even-
tually composing the final 2D similarity transformation:
T2d := T 1

2d ∗ ... ∗ T k2d. This aggregated transformation
generates a 2D aligned crop, as shown in Fig. 1(b). This
alignment method is similar to the one employed in LFW-a,
which has been used frequently to boost recognition accu-
racy. However, similarity transformation fails to compen-
sate for out-of-plane rotation, which is in particular impor-
tant in unconstrained conditions.

3D Alignment To align faces undergoing out-of-plane
rotations, we use a generic 3D shape model and regis-
ter a 3D affine camera which is used to back-project the
frontal face plane of the 2D-aligned crop to the image plane
of the 3D shape. This generates the 3D-aligned version
of the crop as illustrated in Fig. 1(g). This is achieved
by localizing additional 67 fiducial points x2d in the 2D-
aligned crop (see Fig. 1(c)), using a second SVR. As a
3D generic shape model, we simply take the average of
the 3D scans from the USF Human-ID database, which
were post-processed to be represented as aligned vertices
vi = (xi, yi, zi)

n
i=1. We manually place 67 anchor points on

the 3D shape, and in this way achieve full correspondence
between the 67 detected fiducial points and their 3D refer-
ences. An affine 3D-to-2D camera P is then fitted using
the generalized least squares solution to the linear system
x2d = X3d

~P with a known covariance matrix Σ, that is,
~P that minimizes the following loss: loss(~P ) = rTΣ−1r

where r = (x2d −X3d
~P ) is the residual vector and X3d is

a (67×2)×8 matrix composed by stacking the (2×8) matri-
ces [ x>3d(i), 1,~0;~0, x>3d(i), 1], with ~0 denoting a row vector
of four zeros, for each reference fiducial point x3d(i). The
affine camera P of size 2×4 is represented by the vector
of 8 unknowns ~P . The loss can be minimized using the
Cholesky decomposition of Σ, that transforms the problem
into ordinary least squares. Since, for example, detected

points on the contour of the face tend to be more noisy, as
their estimated location is largely influenced by the depth
with respect to the camera angle, we use a (67×2)×(67×2)
covariance matrix Σ given by the estimated covariances of
the fiducial point errors.

Frontalization Since full perspective projections and
non-rigid deformations are not modeled, the fitted camera
P is only an approximation. In order to relax the corrup-
tion of such important identity-bearing factors to the final
warping, we add the residual vector ~r to the reference cor-
respondents, that’s is: x̃3d := x3d + r. Such a relaxation
is plausible for the purpose of warping the 2D image with
smaller distortions to the identity. Without it, faces would
have been warped into the same shape in 3D, losing im-
portant discriminative factors. Finally, the frontalization is
achieved by a piece-wise affine transformation T from x2d
(source) to x̃3d (target), directed by the Delaunay triangu-
lation derived from the 67 fiducial points1. Also, invisible
triangles w.r.t. to camera P , can be replaced using image
blending with their symmetrical counterparts.

3. Representation
In recent years, the computer vision literature has at-

tracted many research efforts in descriptor engineering.
Such descriptors when applied to face-recognition, mostly
use the same operator to all locations in the facial im-
age. Recently, as more data has become available, learning-
based methods have started to outperform engineered fea-
tures, because they can discover and optimize features for
the specific task at hand [18]. Here, we learn a generic rep-
resentation of facial images through a large deep network.

DNN Architecture and Training We train our DNN
on a multi-class face recognition task, namely to classify
the identity of a face image. The overall architecture is
shown in Fig. 2. The input is a pre-processed 3D-aligned
3-channels (RGB) face image of size 152 by 152 pixels
and is given to a convolutional layer (C1) with 32 filters of
size 11x11x3 (we denote this by 32x11x11x3@152x152).
The resulting 32 feature maps are then fed to a max-pooling
layer (M2) which takes the max over 3x3 spatial neighbor-
hoods with a stride of 2, separately for each channel. This
is followed by another convolutional layer (C3) that has 16
filters of size 9x9x16. The purpose of these three layers
is to extract low-level features, like simple edges and tex-
ture. Max-pooling layers make the output of convolution
networks more robust to local translations. When applied to
aligned facial images, they make the network more robust to
small registration errors. However, several levels of pooling
would cause the network to lose information about the pre-
cise position of detailed facial structure and micro-textures.
Hence, we apply max-pooling only to the first convolutional

1The piecewise-affine equations can take into account the 2D similarity
T2d, to avoid going through a lossy warping in 2D.



Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where
more than 95% come from the local and fully connected layers.

layer. We interpret these first layers as a front-end adaptive
pre-processing stage. While they are responsible for most
of the computation, they hold very few parameters. These
layers merely expand the input into a set of simple local
features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 15], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote

by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

∑
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = − log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [24, 20]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [18]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network withL layers, can be seen as a com-
position of functions glφ. In our case, the representation is:
G(I) = gF7

φ (gL6

φ (...gC1

φ (T (I, θT ))...)) with the net’s pa-
rameters φ = {C1, ..., F7} and θT = {x2d, ~P , ~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=

2See the supplementary material for more details.



Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ε)
3.

Since we employ ReLU activations, our system is not in-
variant to scaling of the image intensity. Without biases in
the DNN, perfect equivariance would have been achieved,
yet in practice we have observed that such normalization
makes the system more tolerant to scaling.

4. Verification Metric
Verifying whether two input instances belong to the same

class (identity) or not has been extensively researched in the
domain of unconstrained face-recognition, with supervised
methods showing a clear performance advantage over unsu-
pervised ones. By training on the target-domain’s training
set, one is able to fine-tune a feature vector (or classifier)
to perform better within the particular distribution of the
dataset. For instance, LFW has about 75% males, celebri-
ties that were photographed by mostly professional photog-
raphers. As demonstrated in [5], training and testing within
different domain distributions hurt performance consider-
ably and requires further tuning to the representation (or
classifier) in order to improve their generalization and per-
formance. However, fitting a model to a relatively small
dataset reduces its generalization to other datasets. In this
work, we aim at learning an unsupervised metric that gener-
alizes well to several datasets. Our unsupervised similarity
is simply the inner product between the two normalized fea-
ture vectors. We have also experimented with a supervised
metric, the χ2 similarity and the Siamese network.

4.1. Weighted χ2 distance

The normalized DeepFace feature vector in our method
contains several similarities to histogram-based features,
such as LBP [1] : (1) It contains non-negative values, (2)
it is very sparse, and (3) its values are between [0, 1].
Hence, similarly to [1], we use the weighted-χ2 similarity:
χ2(f1, f2) =

∑
i wi(f1[i] − f2[i])2/(f1[i] + f2[i]) where

f1 and f2 are the DeepFace representations. The weight
parameters are learned using a linear SVM, applied to vec-
tors of the elements (f1[i]− f2[i])2/(f1[i] + f2[i]) .

4.2. Siamese network

We have also tested an end-to-end metric learning ap-
proach, known as Siamese network [8]: once learned, the
face recognition network (without the top layer) is repli-
cated twice (one for each input image) and the features are
used to directly predict whether the two input images be-
long to the same person. This is accomplished by: a) taking
the absolute difference between the features, followed by
b) a top fully connected layer that maps into a single unit
(same/not same). The network has roughly the same num-
ber of parameters as the original one, since much of it is

3The normalization factor is capped at ε = 0.05 in order to avoid divi-
sion by a small number.

Figure 3. The ROC curves on the LFW dataset.

shared between the two replications, but requires twice the
computation. Notice that in order to prevent overfitting on
the face verification task, we enable training for only the
two topmost layers. The Siamese network’s induced dis-
tance is: d(f1, f2) =

∑
i αi|f1[i] − f2[i]|, where αi are

trainable parameters. The parameters of the Siamese net-
work (the αi as well as the joint parameters in the lower
layers) are trained by normalizing the distance between 0
and 1 via a logistic function, 1/(1 + exp(−d)), and by us-
ing a cross-entropy loss and back-propagation.

5. Experiments
We evaluate the proposed DeepFace system, by learning

the face representation on a very large-scale labeled face
dataset collected online. In this section, we first introduce
the datasets used in the experiments, then present the de-
tailed evaluation and comparison with the state-of-the-art,
as well as some insights and findings about learning and
transferring the deep face representations.

5.1. Datasets

The proposed face representation is learned from a large
collection of photos from a popular social network, referred
to as the Social Face Classification (SFC) dataset. The rep-
resentations are then applied to the Labeled Faces in the
Wild database (LFW), which is the de facto benchmark
dataset for face verification in unconstrained environments,
and the YouTube Faces (YTF) dataset, which is modeled
similarly to the LFW but focuses on video clips.

The SFC dataset includes 4.4 million labeled faces from
4,030 people each with 800 to 1200 faces, where the most
recent 5% of face images of each identity are left out for
testing. This is done according to the images’ time-stamp
in order to simulate continuous identification through aging.
The large number of images per person provides a unique
opportunity for learning the invariance needed for the core



problem of face recognition. We have validated using sev-
eral automatic methods, that the identities used for train-
ing do not intersect with any of the identities in the below-
mentioned datasets, by checking their name labels.

The LFW dataset [17] consists of 13,323 web photos
of 5,749 celebrities which are divided into 6,000 face pairs
in 10 splits. Performance is measured by the mean recog-
nition accuracy using the restricted protocol, in which only
the ‘same’ and ‘not same’ labels are available in training; or
the unrestricted protocol, where the training subject identi-
ties are also accessible in training. In addition, the ‘unsuper-
vised’ protocol measures performance on the LFW without
any training on it. We present results for all three protocols.

The YTF dataset [29] collects 3,425 YouTube videos
of 1,595 subjects (a subset of the celebrities in the LFW).
These videos are divided into 5,000 video pairs and 10 splits
and used to evaluate the video-level face verification.

The face identities in SFC were labeled by humans,
which typically incorporate about 3% errors. Social face
photos have even larger variations in image quality, light-
ing, and expressions than the web images of celebrities in
the LFW and YTF which were normally taken by profes-
sional photographers rather than smartphones4.

5.2. Training on the SFC

We first train the deep neural network on the SFC as a
multi-class classification problem using a GPU-based en-
gine, implementing the standard back-propagation on feed-
forward nets by stochastic gradient descent (SGD) with mo-
mentum (set to 0.9). Our mini-batch size is 128, and we
have set an equal learning rate for all learning layers to 0.01,
which was manually decreased, each time by an order of
magnitude once the validation error stopped decreasing, to a
final rate of 0.0001. We initialized the weights in each layer
from a zero-mean Gaussian distribution with σ = 0.01, and
biases are set to 0.5. We trained the network for roughly
15 sweeps (epochs) over the whole data which took 3 days.
As described in Sec. 3, the responses of the fully connected
layer F7 are extracted to serve as the face representation.

We evaluated different design choices of DNN in terms
of the classification error on 5% data of SFC as the test
set. This validated the necessity of using a large-scale face
dataset and a deep architecture. First, we vary the train/test
dataset size by using a subset of the persons in the SFC.
Subsets of sizes 1.5K, 3K and 4K persons (1.5M, 3.3M, and
4.4M faces, respectively) are used. Using the architecture
in Fig. 2, we trained three networks, denoted by DF-1.5M,
DF-3.3M, and DF-4.4M. Table 1 (left column) shows that
the classification error grows only modestly from 7.0% on
1.5K persons to 7.2% when classifying 3K persons, which
indicates that the capacity of the network can well accom-
modate the scale of 3M training images. The error rate rises

4See the supplementary material for illustrations on the SFC.

to 8.7% for 4K persons with 4.4M images, showing the net-
work scales comfortably to more persons. We’ve also varied
the global number of samples in SFC to 10%, 20%, 50%,
leaving the number of identities in place, denoted by DF-
10%, DF-20%, DF-50% in the middle column of Table 1.
We observed the test errors rise up to 20.7%, presumably
increased overfitting on a small training set.

We also vary the depth of the networks by chopping off
the C3 layer, the two local L4 and L5 layers, or all these 3
layers, referred respectively as DF-sub1, DF-sub2, and DF-
sub3. For example, only four trainable layers remain in DF-
sub3 which is a considerably shallower structure compared
to the 9 layers of the proposed network in Fig. 2. In training
such networks with 4.4M faces, the classification errors stop
decreasing after a few epochs and remains at a level higher
than that of the deep network, as can be seen in Table 1
(right column). This verifies the necessity of network depth
when training on a large face dataset.

5.3. Results on the LFW dataset

The vision community has made significant progress
on face verification in unconstrained environments in re-
cent years. The mean recognition accuracy on LFW [17]
marches steadily towards the human performance of over
97.5% [19]. Given some very hard cases due to aging ef-
fects, large lighting and face pose variations in LFW, any
improvement over the state-of-the-art is very remarkable
and the system has to be composed by highly optimized
modules. There is a strong diminishing return effect and any
progress now requires a substantial effort to reduce the num-
ber of errors of state-of-the-art methods. DeepFace cou-
ple large feedforward-based models with fine 3D alignment.
Regarding the importance of each component: 1) Without
frontalization: when using only the 2D alignment, the ob-
tained accuracy is “only” 94.3%. Without alignment at all,
i.e., using the center crop of face detection, the accuracy is
87.9% as parts of the facial region may fall out of the crop.
2) Without learning: when using frontalization only, and a
naive LBP/SVM combination, the accuracy is 91.4% which
is already notable given the simplicity of such a classifier.

All the LFW images are processed in the same pipeline
that was used to train on the SFC dataset, denoted as
DeepFace-single. To evaluate the discriminative capability
of this face representation itself, we follow the unsuper-
vised protocol to directly compare the inner product of a
pair of normalized features. Quite remarkably, this achieves
a mean accuracy of 95.92% which is almost on par with the
best performance to date, achieved by supervised transfer
learning [5]. Further, we learn a kernel SVM (with C=1)
on top of the χ2-distance vector (Sec. 4.1) following the
restricted protocol, i.e., where only the 5,400 pair labels
per split are available for the SVM training. This achieves
an accuracy 97.00%, reducing significantly the error of the



Network Error Network Error Network Error
DF-1.5M 7.00% DF-10% 20.7% DF-sub1 11.2%
DF-3.3M 7.22% DF-20% 15.1% DF-sub2 12.6%
DF-4.4M 8.74% DF-50% 10.9% DF-sub3 13.5%

Table 1. Comparison of the classification errors on the SFC w.r.t.
training dataset size and network depth. See Sec. 5.2 for details.

Network Error (SFC) Accuracy (LFW)
DeepFace-gradient 8.9% 0.9582 ±0.0118
DeepFace-align2D 9.5% 0.9430 ±0.0136
DeepFace-Siamese NA 0.9617 ±0.0120

Table 2. The performance of various individual DeepFace net-
works and the Siamese network.

state-of-the-art [7, 5], see Table 3.
Next, we combine multiple networks trained by feed-

ing different types of inputs to the DNN: 1) The network
DeepFace-single described above based on 3D aligned
RGB inputs; 2) The gray-level image plus image gradi-
ent magnitude and orientation; and 3) the 2D-aligned RGB
images. We combine those distances using a non-linear
SVM (with C=1) with a simple sum of power CPD-kernels:
KCombined := Ksingle +Kgradient +Kalign2d, whereK(x, y) :=
−||x− y||2, and following the restricted protocol, achieve
an accuracy 97.15%.

The unrestricted protocol provides the operator with
knowledge about the identities in the training sets, hence
enabling the generation of many more training pairs to be
added to the training set. We further experiment with train-
ing a Siamese Network (Sec. 4.2) to learn a verification met-
ric by fine-tuning the Siamese’s (shared) pre-trained feature
extractor. Following this procedure, we have observed sub-
stantial overfitting to the training data. The training pairs
generated using the LFW training data are redundant as they
are generated out of roughly 9K photos, which are insuffi-
cient to reliably estimate more than 120M parameters. To
address these issues, we have collected an additional dataset
following the same procedure as with the SFC, containing
an additional new 100K identities, each with only 30 sam-
ples to generate same and not-same pairs from. We then
trained the Siamese Network on it followed by 2 training
epochs on the LFW unrestricted training splits to correct
for some of the data set dependent biases. The slightly-
refined representation is handled similarly as before. Com-
bining it into the above-mentioned ensemble (i.e.,KCombined
+= KSiamese) yields the accuracy 97.25%, under the unre-
stricted protocol. The performances of the individual net-
works, before combination, are presented in Table 2.

The comparisons with the recent state-of-the-art meth-
ods in terms of the mean accuracy and ROC curves are pre-
sented in Table 3 and Fig. 3, including human performance
on the cropped faces. The proposed DeepFace method ad-

Method Accuracy Protocol
Joint Bayesian [6] 0.9242 ±0.0108 restricted
Tom-vs-Pete [4] 0.9330 ±0.0128 restricted
High-dim LBP [7] 0.9517 ±0.0113 restricted
TL Joint Bayesian [5] 0.9633 ±0.0108 restricted
DeepFace-single 0.9592 ±0.0092 unsupervised
DeepFace-single 0.9700 ±0.0087 restricted
DeepFace-ensemble 0.9715 ±0.0084 restricted
DeepFace-ensemble 0.9725 ±0.0081 unrestricted
Human, cropped 0.9753

Table 3. Comparison with the state-of-the-art on the LFW dataset.

Method Accuracy (%) AUC EER
MBGS+SVM- [30] 78.9 ±1.9 86.9 21.2
APEM+FUSION [21] 79.1 ±1.5 86.6 21.4
STFRD+PMML [9] 79.5 ±2.5 88.6 19.9
VSOF+OSS [22] 79.7 ±1.8 89.4 20.0
DeepFace-single 91.4 ±1.1 96.3 8.6

Table 4. Comparison with the state-of-the-art on the YTF dataset.

vances the state-of-the-art, closely approaching human per-
formance in face verification.

5.4. Results on the YTF dataset

We further validate DeepFace on the recent video-level
face verification dataset. The image quality of YouTube
video frames is generally worse than that of web photos,
mainly due to motion blur or viewing distance. We em-
ploy the DeepFace-single representation directly by creat-
ing, for every pair of training videos, 50 pairs of frames,
one from each video, and label these as same or not-same
in accordance with the video training pair. Then a weighted
χ2 model is learned as in Sec. 4.1. Given a test-pair, we
sample 100 random pairs of frames, one from each video,
and use the mean value of the learned weighed similarity.

The comparison with recent methods is shown in Ta-
ble 4 and Fig. 4. We report an accuracy of 91.4% which
reduces the error of the previous best methods by more than
50%. Note that there are about 100 wrong labels for video
pairs, recently updated to the YTF webpage. After these are
corrected, DeepFace-single actually reaches 92.5%. This
experiment verifies again that the DeepFace method easily
generalizes to a new target domain.

5.5. Computational efficiency

We have efficiently implemented a CPU-based feedfor-
ward operator, which exploits both the CPU’s Single In-
struction Multiple Data (SIMD) instructions and its cache
by leveraging the locality of floating-point computations
across the kernels and the image. Using a single core In-
tel 2.2GHz CPU, the operator takes 0.18 seconds to fully
run from the raw pixels to the final representation. Efficient



Figure 4. The ROC curves on the YTF dataset.

warping techniques were implemented for alignment; align-
ment alone takes about 0.05 seconds. Overall, the Deep-
Face runs at 0.33 seconds per image, accounting for image
decoding, face detection and alignment, the feedforward
network, and the final classification output.

6. Conclusion
An ideal face classifier would recognize faces in accu-

racy that is only matched by humans. The underlying face
descriptor would need to be invariant to pose, illumination,
expression, and image quality. It should also be general, in
the sense that it could be applied to various populations with
little modifications, if any at all. In addition, short descrip-
tors are preferable, and if possible, sparse features. Cer-
tainly, rapid computation time is also a concern. We believe
that this work, which departs from the recent trend of using
more features and employing a more powerful metric learn-
ing technique, has addressed this challenge, closing the vast
majority of this performance gap. Our work demonstrates
that coupling a 3D model-based alignment with large capac-
ity feedforward models can effectively learn from many ex-
amples to overcome the drawbacks and limitations of previ-
ous methods. The ability to present a marked improvement
in face recognition, which is a central field of computer vi-
sion that is both heavily researched and rapidly progressing,
attests to the potential of such coupling to become signifi-
cant in other vision domains as well.
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