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ABSTRACT
For many“Big Data”applications, the limiting factor in per-
formance is often the transportation of large amount of data
from hard disks to where it can be processed, i.e. DRAM.
In this paper we examine an architecture for a scalable dis-
tributed flash store which aims to overcome this limita-
tion in two ways. First, the architecture provides a high-
performance, high-capacity, scalable random-access storage.
It achieves high-throughput by sharing large numbers of
flash chips across a low-latency, chip-to-chip backplane net-
work managed by the flash controllers. The additional la-
tency for remote data access via this network is negligible as
compared to flash access time. Second, it permits some com-
putation near the data via a FPGA-based programmable
flash controller. The controller is located in the datapath
between the storage and the host, and provides hardware
acceleration for applications without any additional latency.
We have constructed a small-scale prototype whose network
bandwidth scales directly with the number of nodes, and
where average latency for user software to access flash store
is less than 70µs, including 3.5µs of network overhead.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

General Terms
Design Measurement Performance
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1. INTRODUCTION
We have entered the “Big Data” age. The evolution of

computer networks and the increasing scale of electronic in-
tegration into our daily lives has lead to an explosion of
data to be analyzed. Thanks to the steady pace of Moore’s
Law, our computing abilities on these data have been grow-
ing as well. However, effective computation requires a very
low-latency random access into the data. As a result, it is
highly desirable for the entire working set of the problem to
fit in main memory to achieve good performance.

However, modern Big Data application datasets are often
too large to be cached in the main memory of any host at
a reasonable cost. Instead, they are spread among multi-
ple machines in a cluster interconnected with some network
fabric, and often also stored in a cheaper, higher density
secondary storage such as hard disks. This means data of-
ten has to be accessed from a secondary storage device over
a network, each of which has significantly higher access la-
tency than local main memory. The primary performance
bottleneck is the seek time of magnetic disks, which has to
be amortized by large sequential data access. As a result,
the storage device characteristics in large part dictated the
design of the rest of the system.

With the recent advancement of low latency and high
bandwidth flash devices as alternatives to disks, the perfor-
mance bottleneck has shifted from the storage device to the
network latency and software overhead. As a result, modern
high performance storage systems need to optimize all as-
pects of the system, including the storage, network and soft-
ware stack. Current attempts to increase the performance
of storage systems include use of hardware implementation
of the network stack and better I/O fabric. However, even
state-of-the-art networked storage systems still suffer hun-
dreds of microseconds of latency. This large gap between
the performance of main memory and storage often limits
our capacity to process large amounts of data.

Another facet of high performance storage systems under
active investigation is providing a computation fabric on the
storage itself, effectively transporting computation capabili-
ties to where the storage is, instead of moving large amounts
of data to be processed. However, the processing power that
can be put on a storage device within the power budget is
often limited, and its benefits are sometimes limited when
heavy computation is required. For applications that require
heavy computation, it is effective to use hardware accelera-
tion to assist data processing. Due to the high development
and production cost of dedicated ASIC accelerator chips,
reconfigurable hardware fabrics such as FPGAs are popular



choices for implementing power-efficient application-specific
accelerators.

In this work, we propose a novel high-performance stor-
age architecture, which we call BlueDBM (Blue Database
Machine). The high-level goal of BlueDBM is to provide a
high-performance storage system that accelerates the pro-
cessing of very large datasets. The BlueDBM design aims
to achieve the following goals:

• Low Latency, High Bandwidth: To increase the
performance of response-time sensitive applications,
the network should add negligible latency to the over-
all system while maintaining high bandwidth.

• Scalability: Because Big Data problems are constantly
increasing in size, the architecture should be scalable
to higher capacity and node count.

• Low-Latency Hardware Acceleration: In order
to reduce data transport and alleviate computationally
bound problems, the platform should provide very low-
latency hardware acceleration.

• Application Compatibility: As a general storage
solution for Big Data, existing applications should run
on top of our new storage hardware without any mod-
ification.

• Multi-accessibility: In order to accommodate dis-
tributed data processing applications, the system should
be capable of handling multiple simultaneous requests
from many different users.

The BlueDBM architecture distributes high performance
flash storage among computational nodes to provide a scal-
able, high-performance and cost-effective distributed stor-
age. In order to achieve this, BlueDBM introduces a low-
latency and high-speed network directly between the flash
controllers. The direct connection between controllers not
only reduces access latency by removing the network soft-
ware stack, but also allows the flash controllers to mask
the network latency within flash access latency. As we will
demonstrate, controller-to-controller latencies in such a net-
work can be insignificant compared to flash access latencies,
giving us the potential to expose enormous storage capacity
and bandwidth with performance characteristics similar to
a locally attached PCIe flash drive.

To further improve the effectiveness of the storage system,
BlueDBM includes a FPGA-based reconfigurable fabric for
implementing hardware accelerators near storage. Because
the reconfigurable fabric is located in the datapath of the
storage controller through which data has to travel anyways,
no latency overhead is introduced from using the accelera-
tors.

The key contribution of this paper is a novel storage ar-
chitecture for Big Data applications, which include a low-
latency communication link directly between flash controllers
and a platform for accelerator implementation on the flash
controller itself. We demonstrate the characteristics of such
an architecture on a 4-node prototype system. We are also
engaged in building a much larger system based on the ar-
chitecture.

To test these ideas, we have constructed a small 4-node
prototype of our system using commercially available FP-
GAs [10] coupled to a custom flash array, networked using

high speed inter-FPGA serial links. The prototype has an
average latency to client applications of about 70µs, wh-
ich is an order of magnitude lower than existing distributed
flash systems such as CORFU [13], and rivals the latency of
a local SSD. Our shared 4-node prototype provides 4x the
bandwidth of a single flash card with marginal impact on
access latency. We also implemented a word counting appli-
cation with hardware accelerator support from our storage
platform, showing 4x performance increase over a pure soft-
ware implementation. We are currently building a newer
system employing the same ideas but with more modern
hardware, which will deliver an order of magnitude perfor-
mance increase over the prototype system.

The rest of the paper is organized as follows. Section 2
provides background on storage deployment and FPGA based
acceleration in Big Data. Sections 3 to 5 describes the sys-
tem in detail, and Section 6 discusses the prototype we have
built to demonstrate the performance of the system. Sec-
tion 7 provides the experimental results obtained from the
prototype and its evaluation. Section 8 concludes the paper.

2. RELATED WORK
Storage systems that require high capacity are usually

constructed in two ways: (i) building a Storage Area Net-
work (SAN) or (ii) using a distribute file system. In a SAN,
large amounts of storage are placed in a storage node such
as a RAID server, and these storage devices are connected
together using a dedicated network (i.e. SAN), providing
the abstraction of locally attached disk to the application
servers. However, the physical storage network is usually
ethernet based running on protocols such as iSCSI or FCoE,
which adds milliseconds of software and network latency. An
alternative organization is to distribute the storage among
the application hosts and use the general purpose network
along with a distributed file system (e.g., NFS [7], Lus-
tre [6], GFS [18]) to provide a file-level sharing abstraction.
This is popular with distributed data processing platforms
such as MapReduce [3]. While a distributed file system is
cheap and scalable, the software overhead of concurrency
control and the high-latency congestion-prone general pur-
pose network degrades performance. Nevertheless, tradi-
tionally, these network, software and protocol latencies are
tolerable because they are insignificant compared to the seek
latency of magnetic disks.

This is changing with recent developments in high-performance
flash devices. Large flash storage offer two benefits over mag-
netic disks, namely superior random read performance and
low power consumption, while still providing very high den-
sity. Such advantages make them alternatives to magnetic
disks. Flash chips offer access latency in the order of tens of
microseconds, which is several orders of magnitude shorter
than the 10 to 20 millisecond disk seek time. By organizing
multiple chips in parallel, very high throughput can be ob-
tained. As a result, the storage device is no longer a bottle-
neck in high capacity storage systems. Instead, other parts
of the system such as network latency and software stack
overhead now have a prominent impact on performance. It
has been shown that in a disk-based distributed storage sys-
tem, non-storage components are responsible for less than
5% of the total latency, while in a flash-based system, this
number rises to almost 60% [14].

Flash has its own drawbacks as well. Its characteristics in-
clude limited program erase cycles, coarse-grain block level



erases, and low write throughput. As a result of these char-
acteristics, hardware (e.g., controllers, interfaces) and soft-
ware (e.g., file systems, firmware) traditionally designed for
hard disks are often suboptimal for flash. Much research
has gone into developing techniques such as intelligent ad-
dress translation in the Flash Translation Layer (FTL) to
control area under use [12] [24] [26]. Our storage architec-
ture is similarly motivated by and designed for these flash
characteristics.

Recent efforts such as CORFU [13] attempts to build dis-
tributed file systems tailored for flash storage characteristics,
but still suffers millisecond-level latency. Other attempts
such as QuickSAN [14] have studied directly connecting flash
storage to the network in order to bypass some of the soft-
ware latency. This brings down the latency of the system
to hundreds of microseconds. We hope to further improve
performance by removing protocol and software overhead.

In data centers, several research efforts have suggested
providing side-channels for communication between nodes
within the data center to alleviate and bypass network con-
gestion. [19] attempts to resolve congestion using software
architectural approaches. Halperin et al.[20] examine adding
wireless links to data-centers as an auxiliary communication
mechanism.

Moving computation to data in order to circumvent the
I/O limitations has been proposed in the past. Computa-
tion in main memory (e.g. Computational RAM [16]) has
been studied, but it failed to see much light due to the fast
advancement of I/O interfaces. However, in light of power
consumption walls and Big Data, moving computation to
high capacity secondary storage is becoming an attractive
option. Samsung has already demonstrated the advantages
of having a small ARM processor on the storage device it-
self [22] for in store computation. They have shown power
and performance benefits of offloading I/O tasks from host
CPU to the storage device. However, benefits are only seen
if the offloaded task have low computing complexity and
high data selectivity because of the weak ARM processor.

FPGAs have been gaining popularity as application spe-
cific accelerators for Big Data due to its low power con-
sumption, flexibility and low cost. FPGA accelerators are
currently being used in database management systems [4],
in providing web services [15], as well as in other domains
such as machine learning [23] and bioinformatics [27].

3. SYSTEM ARCHITECTURE
The distributed flash store system that we propose is com-

posed of a set of identical storage nodes. Each node is
a flash storage device coupled with a host PC via a high-
speed PCIe link. The storage device consists of flash chips
organized into busses, controlled by a flash controller im-
plemented on reconfigurable FPGA fabric. The storage de-
vices are networked via a dedicated storage network imple-
mented on multi-gigabit low latency serial links using SERi-
alize/DESerializer (SERDES) functionality provided within
the FPGA fabric. The host servers are networked using
generic Ethernet communications. The construction of the
system is shown in Figure 1.

To use BlueDBM, the host PCs run high level applica-
tions (e.g. databases) which generate read/write commands
to the file system. The file system forwards the requests
to the locally attached FPGA, which fulfills the requests by
accessing either the local or remote flash boards. Data is

Figure 1: BlueDBM top level system diagram con-
sisting of multiple storage nodes connected using
high speed serial links forming an inter-controller
network

globally visible and accessible from all host PCs, and the
address space is shared and unified among all nodes. Al-
ternatively, the application may issue commands to instruct
a hardware accelerator on the FPGA to process the data
directly from the flash controllers.

This organization fulfills our goal of (i) low latency/high
bandwidth by using parallel flash chips, PCIe and high-speed
transceivers coupled with a thin networking protocol; (ii)
scalability through homogeneous nodes and a network pro-
tocol that maintains low latency over multiple hops and is
topologically flexible; (iii) low-latency hardware acceleration
by providing a hook to software to invoke accelerator opera-
tions on data without passing through host; (iv) application
compatibility by providing a generic file system and expos-
ing the abstraction of a single unified address space to the
applications; and (v) multi-accessibility by providing multi-
ple entry points to storage via many host PCs.

The hardware and software stacks of the system are pre-
sented in Figure 2. Hardware running on the FPGA has
5 key components: (i) client interface, (ii) address mapper,
(iii) flash controller, (iv) inter-FPGA router and (v) accel-
erator. The client interface handles the communication of
data and commands with the host over PCIe. Together with
the driver and file system software on the host, they provide
a shared unified address space abstraction to the user ap-
plication. The address mapper maps areas in the logical
address space to each node in the network. The flash con-
troller includes a simple flash translation layer to access the
raw NAND chips on the flash board. The router component
implements a thin protocol for communication over the high
speed inter-FPGA SERDES links. Finally, accelerators may
be placed before and after the router for local or unified ac-
cess to data. The flash controller and related components
are explain in detail below. The inter-FPGA network and
accelerators are explained separately in the next sections.

3.1 File System, Client Interface and Address
Mapper

The client interface module on the FPGA works in con-
cert with the driver and file system software on the host
server to handle I/O requests and responses over PCIe. We
implemented a generic file system using FUSE [1]. FUSE in-
tercepts file system command made to its mount point and



Figure 2: Hardware and software stack of a single
node

allows us to convert file system commands into load/store
operations to our flash device. Currently the entire com-
bined storage of all nodes in the system is translated to a
single flat address space.

For each I/O request, the address mapper module deter-
mines which storage node the data resides in. All storage
nodes in the system need to agree on the same mapping
scheme, which is currently defined programmatically. Due
to the low latency serial communication fabric, there is little
difference in performance between fetching from a local node
or fetching from a remote node. Therefore, the current map-
ping scheme focuses on utilizing as much device parallelism
as possible, by striping the address space such that adjacent
page addresses are mapped to different storage nodes.

3.2 Flash Controller
We use a flash array for fast random access storage. These

arrays are populated with NAND chips organized into sev-
eral buses with chips on each bus sharing control and data
paths. The flash board exposes raw chip interfaces to the
FPGA via GPIOs and the flash controller accesses the chips.
The architecture of the flash controller is shown in Figure 3.
We use an independent chip controller and scheduler per
bus to communicate with the raw flash chips. Not only can
buses be accessed in parallel, data operations on different
flash chips on the same bus may be overlapped to hide la-
tency. We designed the flash controller to take advantage of
these properties. In addition, we use a tag renaming table
and a data switch to manage sharing among multiple hosts
in a distributed setting.

The system includes a simple implementation of the Flash
Translation Layer (FTL). The current FTL focuses only on
providing maximum read performance through parallel ac-

Figure 3: Flash controller featuring a scheduler and
chip controller per bus, virtualized using a tagging
mechanism

cess to as many flash chips as possible. We achieve this by
simply permutating a portion of the logical address bits such
that spatially local requests have a high probability of being
mapped to different bus controllers, buses and chips thereby
improving overall system throughput.

3.3 Controller Virtualization and Communi-
cation

Because multiple clients can access all storage in the sys-
tem through a very thin layer of controllers, there needs to
be an efficient way to match the commands against the data
flowing in and out of the flash chips. For example, data be-
ing read from the flash device needs to be routed back to
where the read command originated. A possible solution is
to implement a distributed agreement protocol between each
node, but this is complex and requires additional data trans-
fer across the network. Instead, we use a two-layer tagging
scheme to keep track of this information.

In the first layer, each command that is issued from a
client interface is given a 8-bit tag value. A list of unoccu-
pied tags are kept in a free tag queue. We dequeue when
a new request is issued, and enqueue back when a request
retires. On the command issuer side, this tag is correlated
with information such as the request page address in a tag
mapping table structure. When the request needs to be pro-
cessed at a remote node, the tag is sent to the target node
with the rest of the request information. However, because
each node keeps a separate list of free tags, there can be tag
collisions at the remote node. This is solved using a second
layer of tagging scheme, which translates the original tag
to the target node’s unique local tag. The first layer tag is
stored in another tag map table with information such as the
request source and the original tag value. After the request
has been handled, the data is sent back to the request ori-
gin node tagged with the original tag value it was requested
with, so it can be reused for future operations.



4. INTER-CONTROLLER NETWORK
Conventional computer networking infrastructures, like

Ethernet and TCP, are designed to provide general purpose
functionality and operate at large scales over long distances.
As a result, they come at a cost of significant time and
processing overhead. But this cost was often overlooked
in the past when constructing SANs, because the latency
of magnetic disks dominated over the network infrastruc-
ture . However, in the case of flash-based deployment, such
networking overhead becomes a serious issue. Furthermore,
conventional method of networking storage devices requires
the storage traffic to share the host-side network infrastruc-
ture. This results in reduced effective bandwidth, because
the link between the host and its storage has to be shared
for local and remote data. Finally, because the network and
storage management are composed separately, the combined
latency adds up to hundreds of microseconds of latency.

BlueDBM solves these issues by having a dedicated stor-
age data network directly connecting the flash controllers
to each other. For this purpose, we constructed a simple
packet-switched storage network protocol over a high-speed
serial link provided by the FPGA package. The protocol
was implemented completely inside the FPGA, and pro-
vides sub-microsecond latency communication between con-
trollers. Because the flash controller manages the storage
device as well as the network, all data transport of words
within a page could be pipelined, effectively hiding the net-
work latency of accessing a page. The protocol includes a
flooding peer discovery functionality, allowing hot-plugging
of nodes into any topology required by the application.

4.1 Routing Layer
Figure 4 depicts the architecture of the router. The rout-

ing mechanism for our storage network is a packet-switched
protocol that resembles a simplified version of the Internet
Protocol. Each node maintains a routing table of all nodes
in the network, where each row contains information includ-
ing which physical link a packet should take to get to that
node and how many network hops away it is. This table
is populated on-line via a flooding discovery protocol. This
allows hotplugging nodes into the network while the system
is live, and also to automatically maintain the shortest path
between all pairs of nodes.

The networking infrastructure is constructed such that
the flash controller or accelerators can declare in code their
own virtual communications links of various widths, and the
router will organize and schedule packets in order to mul-
tiplex all of the virtual lanes onto a single physical link.
This not only allows the writing of simple, easy to under-
stand code for the network infrastructure, but also provides
a clean and efficient abstraction of the network for the ac-
celerator platform. An accelerator can declare, at compile
time, multiple virtual links according to its requirements,
reducing the burden of network management in accelerator
development.

4.2 Physical Layer
In our current implementation we make use of the high-

speed serial transceivers provided in the FPGA silicon as the
physical link. The transceivers provide not only high band-
width and low latency, they also provide relatively reliable
data transport over up to two meters, which is sufficient in
data center racks.

Figure 4: Inter-node network router.

Please note that the choice of physical communication fab-
ric in our system is flexible. While in this particular system,
we do not choose general-purpose media such as ethernet
or Infiniband [5] as a physical transport for performance
reasons, we could have easily chosen other such high-speed
communications fabrics given that it is supported by the
FPGA or hardware. Heterogeneous controller networks can
also be constructed. For example, ethernet could be used
across racks in a data center, while high speed inter-FPGA
serial links can be used within a rack.

5. CONTROLLER AS A PROGRAMMABLE
ACCELERATOR

In order to enable extremely low latency acceleration, our
system provides a platform for implementing accelerators
along the datapath of the storage device (Figure 5, right).
One advantage is that operations on the data can be com-
pleted faster with dedicated hardware. In addition, because
the combined throughput of the BlueDBM cluster can eas-
ily surpass the bandwidth of any single hostside link (i.e.
PCIe), accelerators that filter or compress data can be used
to process more data than the hostside link fabric allows.
This setup is more advantageous compared to using the ac-
celerator as a separate appliance (Figure 5, left), where data
must be transported from storage to the accelerator via the
host, and then transported back after computation.

Figure 5: Flow of data when using an accelerator as
a separate appliance (left) versus an accelerator in
the data path of the storage device (right)



5.1 Two-Part Implementation of Accelerators
In BlueDBM, accelerators can be implemented both be-

fore and after the inter-FPGA router (Figure 2). The local
accelerator, which is located between the flash storage and
the router, is used to implement functions that only require
parts of the data. For example, compressing pages before
writing them to flash. The global accelerator located be-
tween the router and the client interface implements higher-
level functionalities that require a global view of data. Ex-
amples includes table join operations in a database acceler-
ator, or the word counting example that will be described
shortly. Both accelerators can work in concert, for example
to implement compression and decompression algorithms, to
reduce the amount of data transported over the inter-FPGA
link.

5.2 Example Accelerators
To demonstrate the accelerator architecture, we have im-

plemented a simple word counting accelerator on the Blue-
DBM platform. The accelerator exposes an interface to
specify the word being counted, in the form a FUSE virtual
file. Once the word is registered, the accelerator accesses its
virtual access points to storage and network to count the
number of the registered word in all storage devices in the
network. The resulting output can also be accessed via a
FUSE virtual file. An example invocation of the accelerator
looks like the following:

echo "would" > fuse/input ; cat fuse/output

We have already implemented other effective application
specific FPGA-based hardware accelerators serving as sepa-
rate appliances to a host machine. These include application
specific compression [21], database query accelerators and
network link compression algorithms. Most of these can be
ported to the BlueDBM platform with minor modifications,
and we are in the process of doing this. We expect both
compute and data bound applications to see notable perfor-
mance improvements with these accelerators.

6. PROTOTYPE SYSTEM
Our prototype flash system, a photo of which is shown

in Figure 6(a), is based around the Xilinx ML605 board
and our custom built flash board. The ML605 board and
the flash board is coupled using the FPGA Mezzanine Card
(FMC) connector, as seen in Figure 6(b), and plugged into a
PCIe slot on the host server. The implementation overhead
was greatly reduced by building on top of an abstraction
layer [25], which mapped physical physical device details
into logical services. We have also used similar abstractions
of the serial network [17] for early functionality, but even-
tually implemented a routing protocol in favor of dynamic
reconfiguration of the network.

Each flash board hosts 16GB of flash storage arranged
in four parallel buses comprised of 8 512MB Micron SLC
flash chips. An on-board Xilinx CPLD is used to decode
command signals for all buses. Our custom flash board uses
slightly older, less dense flash chips with asynchronous inter-
faces. These older chips with asynchronous signalling lowers
the throughput of each flash bus to a maximum of around
25MB/s, even though our controllers can handle chips with
much larger bandwidths.

We network the processing nodes of our system by way of
the Virtex-6 GTX high speed transceivers. Each transceiver

Figure 7: Prototype physical implementation with
4 storage nodes and 2 hubs

is capable of transporting up to 5Gbps. Unfortunately, our
flash cards utilize the same mezzanine connector as most of
the ML605’s serial transceivers. As a result, each node can
only connect to one other node via the only remaining SMA
port on the ml605 board. Therefore, the prototype uses a
tree topology shown in Figure 7, and connects the processing
nodes using extra ML605s which act as hubs. These ML605s
do not have attached flash cards, enabling us to use most
of its transceivers for inter-FPGA communication using the
Xilinx XM104 connectivity card.

Hosts in our system run the Ubuntu distribution of Linux.
We use the file system FUSE[1] to interface with our storage
system though eventually we plan to implement a true file
system.

7. RESULTS
Using our prototype system, we first characterize the inter-

controller network. Then we examine the raw latency and
throughput of the entire storage system. Finally, we mea-
sure the performance of simple applications running on the
system, taking advantage of multi-accessibility and acceler-
ators.

7.1 FPGA Resource Usage
The approximate area breakdown of each node in our flash

system is shown in Table 1. Our design, which is largely un-
optimized for either timing or area, is dominated by its use of
large buffers. This area corresponds to approximately 35%
of the resources of the medium sized Virtex-6 chip. The rest
of the area is free to be used for accelerator implementation.

Most structures in our system are constant in size regard-
less of the number of processing nodes in the system. No-
table exceptions to this scaling include the routing table
and packet header size. However, even with a thousand-
node system, we can easily fit the routing table within a
few BRAMs on the FPGA given that each entry is merely
128 bits. Packet headers will require 10 bits to identify the
source/destination node in a thousand-node system, which
means a corresponding increase in FIFO sizes. However,
this area increase remains insignificant compared to the rest
of the design on the FPGA. Thus we are able to scale to
thousands of nodes without significant impact on area.

7.2 Network Performance
Figure 8 summarizes the typical throughput and latency

characteristics of our inter-FPGA network architecture. We



(a) Four-node prototype system (b) ML605 and attached flash card

Figure 6: Prototype system

LUTS Registers BRAM

Client Interface 17387 17312 51
Flash Controller 10972 8542 151
Networking 24725 27530 16
Total 53084 (35%) 53384 (17%) 218 (52%)

Table 1: Synthesis metrics for controller compo-
nents at 100MHz.

achieve approximately 450MB/s or 70% of the theoretical
link bandwidth with average packet latency of around 0.5µs
per hop. Latency scales linearly with the number of hops
traversed because we maintain flow-control on a per-hop ba-
sis, as opposed maintaining flow-control on the end-to-end
traversal. Considering that the typical latency of a flash
read is several tens of microseconds, requests in our network
can, in theory, traverse dozens of nodes before the network
latency becomes a significant portion of the storage read
latency, potentially enabling the addressing of multiple ter-
abytes worth of data across many nodes.

Figure 8: Throughput and latency of our inter-
FPGA network using a 5Gbps SERDES connection
on the Virtex-6 ML605.

In our current system, each compute node only supports a
single lane connection due to physical constraints discussed
previously. However, the maximum bandwidth per chip in
the latest generation of FPGAs tops 10GB/s per chip for
moderately sized FPGAs [11]. Based on this, we believe
that BlueDBM can scale to hundreds of processing nodes
while delivering average-case performance similar to a good
commodity SSD array and best-case performance rivalling
or surpassing local PCIe SSDs such as FusionIO [2]. Indeed,
we are currently building a much bigger machine that will
demonstrate the BlueDBM architecture at a much larger
scale.

7.3 Raw Latency
Figure 9(a) shows the average read latency of our storage

system from the perspective of the host user application.
It is the average time from when a request is made for a
single 2048-byte page to when the entire page is received by
the application. Latency is measured by making repeated
blocking requests one at a time, to random pages, which
may reside on different nodes, buses and blocks.

The total read latency can be broken down into flash chip
latency, controller latency and software latency. Chip la-
tency is the access time of a single flash chip and is a char-
acteristic of the NAND flash device. Our SLC chips average
around 27µs. The controller latency is incurred in moving
the data from a flash chip to the appropriate client interface,
and includes the inter-FPGA network latency. The software
latency accounts for the time to transfer the page across the
PCIe bus and through the driver and FUSE file system.

From Figure 9(a), we observe that flash chip latency re-
mains constant with more nodes as expected. Because by
construction, the underlying storage network is abstracted
away, the driver and file system layers are thin and simple.
Their latencies total 4µs and also remains constant with in-
creasing number of nodes. The network latency is minimal
compared to flash latency as shown previously. Moreover,
the tight coupling between the inter-FPGA network and the
flash controller means that the network does not have to wait
for the entire page to be read from the controller before send-
ing it. Network latency can be hid by pipelining individual
words streamed out of the controller across the network.
As a result, the end-to end latency of fetching a page from
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Figure 9: Raw latency and throughput measurements of our 4-node prototype

remote storage is much less than the sum of storage and net-
work latencies accounted for separately. In our prototype,
end-to-end page read latency increase is a marginal 2µs per
additional network hop. We expect this trend to continue
for larger networks. The total latency of our system is an
order of magnitude lower than existing networking solutions
such as Ethernet or fibre channel.

7.4 Raw Throughput
Figure 9(b) shows the sequential read throughput of the

system with increasing number of distributed nodes. Through-
put was measured by running a benchmark on a single host
that requests a continuous stream of pages from the total
address space in order. Each request is serviced by either
a local or a remote node depending on the mapping of the
requested address.

The throughput of our system achieves linear scaling with
the addition of more storage nodes. A single node provides
80 MB/s of bandwidth. A 2-node system doubles the band-
width to 160 MB/s, while a 4-node system further scales up
to 310 MB/s, or 3.8x the speed of a single node. The reason
the performance is not a full 4x is because our prototype
implementation of the PCIe driver is hitting its maximum
throughput. Future iterations of the system will remove this
limitation. It is conceivable that by adding more storage
nodes, we can achieve throughput and capacity comparable
to commercial SAN or PCIe flash products such FusionIO
or PureStorage Flash Array [8], but at a much lower dollars
per gigabyte.

It should be noted that the throughput of a single node of
the prototype system is limited by the low throughput of the
custom flash boards. With modern flash chips (2̃00 MB/s
per chip) organized into more buses, we would be able to
achieve the same linear scaling at much higher bandwidth,
until we saturate the bandwidth of PCIe or the inter-FPGA
links. We are currently designing a new flash board to build
a faster and larger system for real-world big data applica-
tions.

7.5 Multi-Access Performance Scaling
Effective multi-access capability of a storage system is cru-

cial in a distributed processing environment such as MapRe-
duce. We demonstrate this ability by running computation-
ally heavy workloads on multiple consumer nodes and mea-
suring the achieved performance of the system.

Figure 10 shows the performance scaling of the system
in a multi-access setting. Throughput is shown normalized
against a single-access scenario in a four-node system. It
can be seen that the total bandwidth delivered by the sys-
tem linearly increases with the number of consumers. This is
because the total available bandwidth of the system exceeds
the amount a single server node could process. This shows
that our system is an effective way to share device storage
and bandwidth among multiple hosts, where each host may
not always require the maximum bandwidth from the stor-
age device, because for example, it is doing computation on
the data or waiting for external input.

However, if all nodes are constantly requesting maximum
throughput, we will not see linear scaling. In such a case,
the total throughput of the system will saturate at the max-
imum internal bandwidth, after which node throughput will
decrease. It is worthy to note that this is a baseline ex-
periment to demonstrate the raw performance of the sys-
tem, without advanced hot block management features such
as DRAM caching or deduplication. After such advanced
features are implemented, we expect to show better perfor-
mance even on bandwidth intensive workloads.

7.6 Application-Specific Acceleration
Figure 11 shows the performance results of the word count-

ing application, implemented with (i) an in-datapath hard-
ware accelerator, (ii) an off-datapath hardware accelerator
treated as a separate appliance, and (iii) software only. All
experiments were run on the two-node configuration, where
the maximum bandwidth is 140MB/s. It can be seen that
while the accelerator on the datapath makes almost max-
imum use of the device bandwidth at 128MB/s, the soft-
ware implementation of the application is not nearly as fast



Figure 10: Performance scaling in multi-access sce-
nario

(31MB/s), because it is bound by the CPU. Even the hard-
ware accelerator, implemented as a separate appliance suf-
fers significant throughput loss because of the overhead in-
volved in streaming the fetched data into the accelerator.

Because out host server provides only one PCIe slot, we
could not implement the off-datapath accelerator as a physi-
cally separate appliance. Instead, the accelerator shares the
FPGA fabric and PCIe link of the flash controller. In or-
der to utilize the accelerator, data read from flash storage
is transferred back to the FPGA, this time to the acceler-
ator implementation instead of the flash controller. How-
ever, even though the flash controller and accelerator share
some of the same resources, because they share no control
structure inside the FPGA and the direction of heavy data
transfer on PCIe is different, we do not think the perfor-
mance characteristics of this configuration is very different
from a physically separate implementation.

Figure 11: Word counting accelerator performance
scaling

8. CONCLUSION AND FUTURE WORK
“Big Data” processing requires high-performance storage

architectures. In this paper, we have examined an archi-
tecture for a scalable distributed flash store, wherein each
node possesses a moderate amount of storage resources and

reconfigurable fabric for accelerator implementation, and
is connected to other nodes by way of a low-latency and
high-bandwidth controller-to-controller network. We have
demonstrated that by having the inter-FPGA network con-
necting the controllers directly, each node is able to access re-
mote storage with negligible performance degradation. Not
only does the controller-to-controller network provide pool-
ing of storage capacity, but it also allows combining the
throughput of all nodes on the network, resulting in linear
throughput scaling with more nodes. We also demonstrated
that offloading computation into the storage controller as
an accelerator provides performance benefits against imple-
menting acceleration as a separate appliance.

We are in the process of building a 20-node BlueDBM
rack-level system using more modern, faster and higher ca-
pacity flash boards with newer Xilinx VC707 FPGA boards [11].
The new flash board is planned to deliver more than 1GB/s
of throughput per storage node, and the server-side PCIe
bandwidth will perform at more than 3GB/s. The new sys-
tem will be used to explore real Big Data problems at the
storage hardware level. Some planned improvements and
experimentations include:

Improved FTL: Our current system is designed for read-
intensive applications. We have thus far assumed that writes
occur infrequently. Our next step is to optimize writes to
flash memory by designing wear leveling, garbage collection,
write amplification reduction algorithms specifically for a
controller networked flash storage system.

DRAM Caching: We can cache reads and writes to the
SSD in DRAM on the FPGA board. This can reduce writes
to the flash and improve performance. We may use a cache
coherence protocol to synchronize the cache of individual
nodes. Additionally, because of our low latency inter-FPGA
network, we could create a shared global DRAM cache from
DRAM of all the nodes and dynamically partition them ac-
cording to the workload characteristics.

Database Acceleration: Existing applications can al-
ready take advantage of BlueDBM’s distributed flash store,
but we aim to further accelerate database management sys-
tems such as Postgres or SciDB [9] by offloading database
operations to the FPGA. Specifically, filtering, aggregation
and compression tasks could be done directly at the storage
level.

We believe our system holds great promise both for high-
speed rack-level storage networking and for large-scale ap-
plication acceleration in Big Data.
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